Clover User Manual

Version 1.3.13

Includes:

Eclipse Plugin 1.2.10

IDEA 3.x Plugin 0.8

IDEA 4.x Plugin 1.0.7

IDEA 5.x Plugin 1.0.8

IDEA 6.x Plugin @IDEA6_RELEASE_NUM@
JDeveloper Plugin 1.0

JBuilder Plugin 1.0

NetBeans Module 0.6

Clover 1.3.13 User Manual

1. Introduction

1.1. Starting Points

If you are new to Clover and want to get it going with your Ant project quickly, try the
Quickstart Guide. The Introduction for Code Coverage section provides a brief
background on the theory and motivation behind Code Coverage.

If you are browsing and interested in seeing how Clover can be used on your project, see
Using Clover Interactively and Using Clover in Automated builds.

If you are using a Clover IDE Plugin, see the Plugin Guides section.

The Clover Tutorial provides agood alternative introduction to Clover.

For help with Ant, see The online Ant manual at http://ant.apache.org/manual/index.html.

For Clover troubleshooting information, see the EAQ or Online Forums.

1.1.1. System Requirements

JDK Version JDK 1.2 or greater required to perform
instrumented compilation and coverage
measurement.

JDK 1.3 or greater required to produce
coverage reports.

Ant Version Ant 1.4.1 or greater.

Operating System Clover is a pure Java application and should run
on any platform provided the above
requirements are satisfied.

The Clover IDE Plugins document their own IDE version requirements. Please consult the
Plugins Section

1.1.2. Ingtalling your licensefile

You need a valid Clover licensefileto run Clover. You can obtain afree 30 day evaluation
license or purchase acommercial license at http://www.cenqua.com.

Toinstall your Clover license file, you need to do one of the following:

« Placethelicense file next to the Clover jar file (or next to the Clover plugin jar file, if you
arerunning a Clover IDE plugin).

Page 2

http://ant.apache.org/manual/
http://www.cenqua.com/forums/
http://www.cenqua.com

Clover 1.3.13 User Manual

» Placethelicensefile on the Java Classpath that will be used to run Clover.
» Placethelicensefile on the file system somewhere, and then set the Java System
Property cl over. | i cense. pat h to the absolute path of the licensefile.

1.1.3. Acknowledgements

Clover makes use of the following excellent 3rd party libraries.

Jakarta Velocity 1.2 Templa@ing engine used for Html report
generation.

Antlr 2.7.1 A public domain parser generator.

iText 0.96 Library for generating PDF documents.

Jakarta Ant The Ant build system.

To prevent library version mismatches, all of these libraries have been obfuscated and/or repackaged and included in the clover
jar. We do this to prevent pain for users that may use different versions of these libraries in their projects.

Page 3

Clover 1.3.13 User Manual

2. Code Coverage

2.1. Code Coverage

2.1.1. What is Code Cover age?

Code coverage measurement simply determines those statementsin a body of code have been
executed through a test run and those which have not. In general, a code coverage system
collects information about the running program and then combines that with source
information to generate a report on test suite's code coverage.

Code coverage is part of afeedback loop in the development process. As tests are devel oped,
code coverage highlights aspects of the code which may not be adequately tested and which
require additional testing. Thisloop will continue until coverage meets some specified target.

2.1.2. Why Measur e Code Cover age?

It iswell understood that unit testing improves the quality and predictability of your software
releases. Do you know, however, how well your unit tests actually test your code? How
many tests are enough? Do you need more tests? These are the questions code coverage
measurement seeks to answer.

Coverage measurement also helps to avoid test entropy. As your code goes through multiple
release cycles, there can be atendency for unit tests to atrophy. As new code is added, it may
not meet the same testing standards you put in place when the project was first released.
Measuring code coverage can keep your testing up to the standards you require. You can be
confident that when you go into production there will be minimal problems because you
know the code not only passesits tests but that it is well tested.

In summary, we measure code coverage for the following reasons.

« To know how well our tests actually test our code
« To know whether we have enough testing in place
« To maintain the test quality over the lifecycle of a project

Code coverage is not a panacea. Coverage generally follows an 80-20 rule. Increasing
coverage values becomes difficult with new tests delivering less and less incrementaly. If
you follow defensive programming principles where failure conditions are often checked at
many levels in your software, some code can be very difficult to reach with practical levels
of testing. Coverage measurement is not a replacement for good code review and good
programming practices.

Page 4

Clover 1.3.13 User Manual

In general you should adopt a sensible coverage target and aim for even coverage across all
of the modules that make up your code. Relying on a single overall coverage figure can hide
large gapsin coverage.

2.1.3. How Code Coverage Works

There are many approaches to code coverage measurement. Broadly there are three
approaches, which may be used in combination:

Source Code Instrumentation This approach adds instrumentation statements
to the source code and compiles the code with
the normal compile tool chain to produce an
instrumented assembly.

Intermediate code Instrumentation Here the compiled class files are instrumented
by adding new bytecodes and a new
instrumented class generated.

Runtime Information collection This approach collects information from the
runtime environment as the code executes to
determine coverage information

Clover uses source code instrumentation, because although it requires developers to perform
an instrumented build, source code instrumentation produces the most accurate coverage
measurement for the least runtime performance overhead.

As the code under test executes, code coverage systems collect information about which
statements have been executed. This information is then used as the basis of reports. In
addition to these basic mechanisms, coverage approaches vary on what forms of coverage
information they collect. There are many forms of coverage beyond basic statement coverage
including conditional coverage, method entry and path coverage.

2.1.4. Code Coverage with Clover

Clover is designed to measure code coverage in a way that fits seamlessly with your current
development environment and practices, whatever they may be. Clover's IDE Plugins
provide developers with away to quickly measure code coverage without having to leave the
IDE. Clover's Ant and Maven integrations allow coverage measurement to be performed in
Automated Build and Continuous Integration systems and reports generated to be shared by
the team.

Types of Coverage measured

Clover measures three basic types of coverage analysis:

Page 5

Clover 1.3.13 User Manual

Statement Statement coverage measures whether each
statement is executed

Branch Branch coverage (sometimes called Decision
Coverage) measures which possible branches in
flow control structures are followed. Clover does
this by recording if the bool ean expression in
the control structure evaluated to both t r ue and
f al se during execution.

Method Method coverage measures if a method was
entered at all during execution.

Clover uses these measurements to produce a Total Coverage Percentage for each class, file,
package and for the project as a whole. The Total Coverage Percentage allows entities to be
ranked in reports. The Total Coverage Percentage (TPC) is calculated as follows:

TPC = (BT + BF + SC + M)/ (2*B + S + M
wher e

BT - branches that evaluated to "true" at |east once
BF - branches that evaluated to "fal se" at | east once
SC - statenents covered

MC - net hods entered

B total number of branches
S - total number of statenents
M - total nunber of nethods

Page 6

Clover 1.3.13 User Manual

3. Clover with Ant

3.1. Quick Start Guidefor Ant

This section shows you how to quickly get Clover integrated into your build. Clover
instrumentation and reporting are highly configurable so later sections of this manual will
detail available configuration options and typical usage scenarios.

Follow these simple stepsto integrate Clover with your build:

3.1.1. Install Clover
ensure you are using arecent version of Ant (v1.4.1 or greater)

copy <CLOVER_HOVE>/ | i b/ cl over . j ar into<ANT_HOVE>/ | i b. (If you can't install
into ANT_HOVE/ | i b, see Installation Options).

3.1.2. Add Clover targets

Edit bui | d. xm for your project:
1. add the Clover Ant tasks to your project:

<t askdef resource="cl overtasks"/>
2. add atarget to switch on Clover:

<target nane="with.clover">
<cl over-setup initString="mycoverage. db"/>
</target>
3. add one or more targets to run clover reports:

to launch the Swing viewer, use:

<target name="cl over.sw ng" depends="with.cl over">
<cl over-vi ew >
</target>

- OR - for html reporting, use (change the oultfile to a directory path where Clover should
put the generated html):

<target name="clover.htm " depends="with.clover">
<cl over-report>
<current outfile="clover_htm">
<format type="htm"/>
</current>
</cl over-report>
</target>

- OR - for xml reporting, use (change the ouitfile to a file where Clover should write the

Page 7

Clover 1.3.13 User Manual

xml file):

<target name="clover.xm " depends="with.clover">
<cl over-report>
<current outfile="coverage.xnl ">
<format type="xnm"/>
</current>
</cl over-report>
</target>

- OR - for pdf reporting, use (change the outfile to a file where Clover should write the
pdf file):

<target nane="clover.pdf" depends="wi th.clover">
<cl over-report>
<current outfile="coverage. pdf">
<format type="pdf"/>
</current>
</cl over-report>
</target>

- OR - for simple emacs-style reporting to the console, try:

<target name="cl over.| og" depends="with.clover">

<cl over-1og/ >
</target>
- Add cl over. j ar totheruntime classpath for your tests. How you do this depends
on how you run your tests. For tests executed viathe <j uni t > task, add a classpath
element:

<junit ...>

<cl asspat h>
<pat hel enent pat h="${ant. hone}/lib/cl over.jar"/>
</ cl asspat h>
</junit>

3.1.3. Compile and run with Clover

Now you can build your project with Clover turned on by adding the "with.clover" target to
the list of targets to execute. For example (if your compile target is named 'build' and your
unit test target is named 'test’):

ant with.clover build test

3.1.4. Generate a Coverage Report

To generate a Clover coverage report:

ant clover.htm (or clover.xm, clover.view etc)

Page 8

Clover 1.3.13 User Manual

3.2. Installation Options

In order to use Clover with Ant you must put cl over . j ar in Ant's classpath. Options for
doing this depend on the version of Ant you are using.

321 Ant14.1,15Xx

Prior to Ant 1.6, the easiest way to install Clover is to copy cl over.jar into
ANT_HOVE/ | i b (Since all jarsin this directory are automatically added to Ant's classpath
by the scriptsthat start Ant).

Alternatively, you can add CLOVER HOME/ cl over.j ar to the CLASSPATH system
environment variable before running Ant. For information about setting this variable, please
consult your Operating System documentation.

3.2.2. Ant 1.6.x
Ant 1.6 introduces severa new ways to add jars to Ant's classpath. This allows more

flexibility when installing Clover.

Installing Clover locally for a single user

1. createadirectory ${user. hone}/.ant/lib
2. copyclover.jar to${user. hone}/.ant/lib

The location of ${ user . hone} depends on your VM and platform. On Unix systems ${ user . hone} usualy mapsto the
user's home directory. On Windows systems ${user. hone} will map to something like C:\ Docunents and
Set ti ngs\ user nane\ . Check your VM documentation for more details.

Installing Clover at an arbitary location

You can install Clover at an arbitary location and then refer to it using the - 1 i b command
line option with Ant:

ant -l1ib CLOVER HOVE/lib buil dWthd over
(Where CLOVER_HOME is the directory where Clover was installed).

3.2.3. Adding Clover to Ant'sclasspath from build.xml

In some cases it is not desirable to add ¢l over . j ar to Ant's classpath using the methods
described above. This section outlines a method for adding cl over . j ar to Ant's classpath

Page 9

Clover 1.3.13 User Manual

by modifying only the project bui | d. xm file, using a specia utility Ant task called
<ext endcl asspat h> that is distributed with Clover.

The <ext endcl asspat h> task is distributed in
CLOVER _HOVE/ et ¢/ cenquat asks. j ar

1. copy CLOVER HOVE/ l'i b/ cl over.jar and
CLOVER _HOVE/ et ¢/ cenquat asks. j ar to aproject-relative directory (the rest of
these instructions assume both jars areinstalled at PRQJECT_HOVE/ | i b)

2. editbui | d. xm and add the following near the top of thefile:

<t askdef resource="conf cenqua/ant/antlib.xm " classpath="I1ib/cenquatasks.jar"/>
<ext endcl asspath path="Iib/clover.jar"/>
<t askdef resource="cl overtasks" classpath="1ib/clover.jar"/>

Y ou can now use the standard Clover Ant tasksin your bui | d. xm file.

3.2.4. Checking if Clover isavailablefor the build

In some cases you may want to check if Clover is available before executing Clover-related
targets. For example, you may need to ship the build file to others who may not have Clover
installed. To check Clover's availability you can make use of the standard Ant
<avai | abl e> task:

<target name="-check. cl over">
<avail abl e property="cl over.installed"
cl assnane="com cenqua. cl over. d overlnstr" />
</target>

<t arget name="guard. nocl over" depends="-check. cl over" unl ess="cl over.installed">
<fail message="The target you are attenpting to run requires C over, which doesn't
</target>

<target name="with.clover" depends="guard. nocl over">

3.3. Usage Scenarios

3.3.1. Using Clover Interactively

In this scenario, a developer is responsible for obtaining a certain level of code coverage on
her code before it is accepted into the base. The typical cycle the developer follows is
something like:

1. write code/tests

Page 10

Clover 1.3.13 User Manual

2. runtests
3. inspect test results and code coverage

This process is repeated until all tests pass and code coverage of the tests meets a certain
level.

Clover provides the following features to support this development pattern:

M easuring cover age on a subset of sourcefiles
Viewing sour ce-level code cover age quickly
Viewing summary coverage results quickly

I ncrementally building cover age r esults

M easuring coverage on a subset of sourcefiles

The <clover-setup> task takes an optional nested fileset element that tells Clover which files
should be included/excluded in coverage anaysis:

<cl over-setup initstring="cl over-db/ mycoverage. db" >
<files includes="**/plugins/cruncher/**, **/plugins/mncher/**"/>
</ cl over - set up>

The includes could be set using an Ant property so that individual developers can specify
includes on the command line:

<property nane="coverage. i ncl udes" val ue="**"/>

<cl over-setup initstring="cl over-db/ mycoverage. db" >
<files includes="${coverage.includes}"/>

</ cl over - set up>

Developers can then use acommand line like:
ant build -Dcoverage.includes=**/foo/*.java

Viewing sour ce-level code coverage quickly

Clover provides two ways of quickly viewing coverage results. The <clover-log> task
provides quick reporting to the console:

<cl over-1og/ >

The output format from the clover-log task uses the filelline:column format that many IDES
can parse.

The <clover-view> task launches the Swing coverage viewer which allows interactive
browsing of coverage results:

<cl over-vi ew >

Page 11

Clover 1.3.13 User Manual

If you launch the viewer from a second window, it can be left running while you develop. At the end of every test run, you can
hit the "refresh" button on the viewer to load the latest coverage results.

Viewing summary coverage results quickly

The <clover-log> task provides an option that will print a summary of coverage results to the
console:

<cl over-1log | evel ="sumary"/>

I ncrementally building cover age results

When iteratively improving coverage on a subset of your project, you may want to include
coverage data from several iterations in coverage results. Clover supports this with the span
attribute which works on current reports - see Using Spans. This attribute can be used to tell
Clover how far back in time to include coverage results (measured from the time of the last
Clover build). To include results gathered over the last hour use:

<cl over-1og span="1h"/>

3.3.2. Using Clover in Automated Builds

In this scenario, the project is checked out, built and tested at regular intervals, usualy by an
automated process. Some third party tools that support this type of build are AntHill,
Centipede and CruiseControl.

Clover supports this scenario with the following features:

Detailed coveragereportsfor the whole team
Executive summary coveragereports

Historical coverage and project metricsreporting
Coverage criteria checking and triggers

Detailed coverage reportsfor the whole team

The <clover-report> task generates source-level html coverage reports that can be published
for viewing by the whole team:

<target name="cl over.report" depends="wi th.cl over">
<cl over-report>
<current outfile="clover_htm">
<format type="htm"/>
</current >

Page 12

http://www.urbancode.com/projects/anthill/default.jsp
http://krysalis.org/centipede/
http://cruisecontrol.sourceforge.net/

Clover 1.3.13 User Manual

</ cl over-report>
</target>

Executive summary cover age reports

The <clover-report> task can generate summary reports in PDF suitable for email or audit
purposes.

<target name="cl over.sunmmary" depends="with.cl over">
<cl over-report >
<current summary="yes" outfil e="coverage. pdf ">
<format type="pdf"/>
</current>
</ cl over-report>
</target>

Historical coverage and project metricsreporting

Clover can generate a historical snapshot of coverage and other metrics for your project using
the <clover-historypoint> task. Historical data can then be colated into a historical report
using the <clover-report> task:

<target name="cl over.report" depends="wi th.cl over">

<l-- generate a historypoint for the current coverage -->
<cl over-hi storypoint historyDir="cl over_hist"/>

<cl over-report>

<l-- generate a current report -->
<current outfile="clover_htm">

<format type="htm "/>
</current>

<l-- generate a historical report -->
<hi storical outfile="clover_htm /historical.htnm"
hi storyDi r="cl over _hist">
<format type="htm"/>
</ historical >
</cl over-report>
</target>

Coverage criteria checking and triggers

The <clover-check> task can be used to monitor coverage criteria. If coverage does not meet
the criteria, the build can be made to fail or an arbitary activity can be triggered. In the
example below, if project coverage is not 80%, an executive summary coverage report is
generated and mailed to the team:

Page 13

Clover 1.3.13 User Manual

<target name="coverageAl ert" depends="coverage. check"
i f="coverage check failure">
<cl over-report>
<current summary="yes" outfil e="coverage. pdf">
<format type="pdf"/>
</current>
</cl over-report>
<mai | from="ni ghtl ybui | d@omewhere. not"
tolist="team@onewhere. not "
subj ect ="coverage criteria not met"
nessage="%${coverage _check failure}"
files="coverage. pdf"/>
</target>

<target name="coverage.check" depends="with.cl over">
<cl over-check target="80%

failureProperty="coverage check failure"/>
</target>

3.4. Ant Task Reference
3.4.1. Clover Ant Tasks

Installing the Ant Tasks

Clover provides a set of ant tasks to make project integration easy. To make these tasks
available in your project build file, you need to:

1. install cl over.jar into ANT_HOVE/ | i b
2. add thefollowing lines to your build file:

<t askdef resource="cl overtasks"/>
<t ypedef resource="cl overtypes"/>

Thetasks

<clover-setup> Configures and initialises Clover. This task
needs to be run before other Clover tasks.

<clover-report> Produces coverage reports in different formats.

<clover-check> Tests project/package code coverage against
criteria, optionally failing the build if the criteria
are not met.

<clover-log> Reports coverage results to the console at
various levels.

<clover-historypoint> Records a coverage history point for use in

historical coverage reports.

Page 14

Clover 1.3.13 User Manual

<clover-view> Launches the Swing coverage viewer.

<clover-clean> Delete the coverage database and/or associated
coverage records.

<clover-merge> Merges two or more Clover databases to allow
multi-project reporting.

3.4.2. <clover-setup>

Description

The <clover-setup> task initialises Clover for use with your project. In Clover 1.0, Clover's
operation was managed by setting various Ant properties. The <clover-setup> task simplifies
this procedure.

Parameters
Attribute Description Required

initstring The Clover initString describes | Yes
the location of the clover
coverage database. Typically
this is a relative or absolute file
reference. Note that this value
is not resolved relative to the
project's base directory.

enabled This controls whether Clover | No; defaultsto t r ue
will instrument code during
code compilation. This attribute
provides a convenient control
point to enable or disable
Clover from the command line

clovercompiler After instrumentation, Clover No
hands off compilation to the
standard Ant compiler adapter
(or the compiler specified by
the build.compiler Ant
property). This attribute
specifies the adapter to use. It
takes the same values as the
standard Ant build.compiler
property. If you wish to specify
an alternative compiler, you
can either set the

Page 15

preserve

source

tmpdir

flushpolicy

build.compiler property or use
this attribute.

A boolean attribute which
controls whether the
instrumented source will be
retained after compilation.

The default source level to
process source files at. Note
that setting the source attribute
on the <javac> target will
override this setting.

The directory into which Clover
will write an instrumented copy
of the source code.

This attribute controls how
Clover flushes coverage data
during a test run. Valid values
are directed, interval, or
t hr eaded.
directed
Coverage data is flushed at
JVM shutdown, and after
an inline flush directive.
i nterval
Coverage data is flushed
as for di rect ed, as well
as periodically at a
maximum rate based on
the value of
flushinterval . Thisisa
"passive" mode in that
flushing potentially occurs
as long as instrumented
code is being executed.
t hr eaded
Coverage data is flushed
as for di rect ed, as well
as periodically at a rate
based on the value of
flushinterval . Thisis
an "active” mode in that
flushing occurs on a
separate thread and is not
dependent on the

Clover 1.3.13 User Manual

No; defaults to f al se

No

No

No; defaults to di r ect ed

Page 16

Clover 1.3.13 User Manual

execution of instrumented
code.

For more information, see Flush
Palicies.

flushinterval When the flushpolicy is set to | No
i nterval or threaded this
value is the minimum period
between flush operations (in
milliseconds)

relative This controls whether the | No; defaults to f al se
initstring parameter is treated
as a relative path or not.

It is important to note that the Clover compiler adapter still picks up its settings from the set
of Clover Ant properties. The <clover-setup> task provides a convenience method to set
these properties. This means that builds that use the Clover 1.0 property set will continue to
operate as expected.

Nested Elements of <clover-setup>

<files>

An Ant patternset element which controls which files are included or excluded from Clover
instrumentation.

The <useclass> sub-element has been deprecated and has no effect.

<fileset>

As of Clover 1.2, <clover-setup> aso supports multiple Ant <filesets>. These give greater
flexibility in specifying which source files are to be instrumented by Clover. This is useful
when you have more than one source base and only want some of those source bases to be
instrumented. This can be difficult to setup with patterns. Filesets a'so allow much greater
flexibility in specifying which files to instrument by facilitating the use of Ant's fileset
selectors.

<methodContext>

Specifies amethod Context definition. See Using Contexts for more information.

Page 17

Clover 1.3.13 User Manual

Parameters
Attribute Description Required
name The name for this context. Must ' Yes

be unique, and not be one of
the reserved context names

(See Using Contexts)

regexp A Perl 5 Regexp that defines | yes

the context. This regexp should
match the method signatures of
methods you wish to include in
this context. Note that when
method signatures are tested
against this regexp, whitespace
is normalised and comments
are ignored.

<gstatementContext>

Specifies a statement Context definition. See Using Contexts for more information.

Parameters
Attribute Description Required
name The name for this context. Must | Yes

be unique, and not be one of
the reserved context names

(See Using Contexts)

regexp A Perl 5 Regexp that defines | yes

the context. This regexp should
match statements you wish to
include in this context. Note
that when statements are
tested against this regexp,
whitespace is normalised and
comments are ignored.

Examples

<cl over-setup initstring="cl over-db/coverage. db"/>
This example is the minimal setup to use clover. In this case the clover coverage database is

Page 18

Clover 1.3.13 User Manual

located in the clover-db relative directory.

<cl over-setup initstring="cl over-db/coverage. db"
enabl ed="${ enabl e} "
<files>
<excl ude nane="**/optional /**/*. java"/>
</files>
</ cl over - set up>
This example shows the use of a property, "enable", to control whether Clover
instrumentation is enabled. Also the instrumentation will exclude all java source filesin trees

named "optional". Note that the fileset can also be referenced using arefid attribute.

<cl over-setup initstring="cl over-db/coverage. db"
enabl ed="${ cover age. enabl e} "
<fileset dir="src/min">
<cont ai ns text="Joe Bl oggs"/>
</fileset>
</ cl over - set up>
This example instruments all source files in the src/main directory tree that contain the string
"Joe Bloggs'. Ant's filesets supports a number of these selectors. Please refer to the Ant

manual for information on these selectors.

Interval Flushing

By default Clover will write coverage data to disk when the hosting JVM exits, via a
shutdown hook. Thisis not always practical, particularly when the application you are testing
runs in an Application Server. In this situation, you can configure Clover to use "interval"
flushing, where coverage data is written out periodically during execution:

<cl over-setup initstring="cl over-db/coverage. db"
flushpolicy="interval"
fl ushi nt erval ="5000"/ >
The "flushinterval" defines in milliseconds the minimum interval between coverage data
writes.

Specifying a delegate compiler

Clover provides the optiona "clovercompiler" attribute to allow specification of the java
compiler to delegate to once instrumentation is completed. The attribute accepts the same
values "compiler" attribute of the Ant Javac Task.

<cl over-setup initstring="cl over-db/coverage. db"
cl overconpiler="jikes"/>

Page 19

Clover 1.3.13 User Manual

This example will pass compilation to the "jikes' compiler once instrumentation is complete.
3.4.3. <clover-report>

Description

Generates current and historical reports in multiple formats. The basic nesting of elements
within the <clover-report> task is as follows:

<cl over-report>
<current>
<fileset/>
<sour cepat h/ >
<fornmat/>
</ current>
<hi storical >
<format/>
<overvi ew >
<coverage/ >
<netrics/>
<npvers/ >
</historical >
</cl over-report>

Parameters
Attribute Description Required
initstring The initstring of the coverage | No; If not specified here, you
database. must ensure <clover-setup> is
called prior the execution of this
task.
failOnError If true, failure to generate a No; defaults to "true".

report causes a build failure.

Nested elements of <clover-report>

These elements represent the actual reports to be generated. You can generate multiple
reports by specifying more than one of these inside a <clover-report> el ement.

<current>

Generates a current coverage report. Specify the report format using a nested Format
element. Valid formats are XML, HTML, and PDF athough not all configurations support
al formats. The default format is PDF if summary="true" or XML if not. See Current Report

examples.

Page 20

Clover 1.3.13 User Manual

Parameters
Attribute Description Required
title Specifies a title for the report. No

titteAnchor if specified, the report title will No; default is to not render the
be rendered as a hyperlink to ' report title as a hyperlink.
this href.

titteTarget Specifies the href target if the No; defaultis " top"
title is to be rendered as a
hyperlink (see titl eAnchor
above). HTML format only

alwaysReport If set to true, a report will be | No; defaults to "false"
generated even in the absence
of coverage data.

outfile The outfile to write output to. If | Yes
it does not exist, it is created.
Depending on the specified
format, this either represents a
regular file (PDF, XML) or a
directory (HTML).

summary Specifies whether to generate a = No; Defaults to "false".
summary report or detailed
report.

package Restricts the report to a No
particular package.

span Specifies how far back in time @ No; Defaults to "0s".
to include coverage recordings
from since the last Clover build.

See Using Spans.

<historical>

Generates a historical coverage report. Specify the report format using a nested Format
element. Vaid formats are HTML or PDF. The default format is PDF. Contents of the
historical report are optionally controlled by nested elements. See Nested elements of
Historical.

Parameters

Page 21

Attribute
title

titleAnchor

titleTarget

outfile

historyDir

package

from

to

dateFormat

Description
Specifies a title for the report.

if specified, the report title will
be rendered as a hyperlink to
this href.

Specifies the href target if the
title is to be rendered as a
hyperlink (see titl eAnchor
above). HTML format only

The outfile to write output to. If
it does not exist, it is created.
Depending on the specified
format, this either represents a
regular file (PDF) or a directory
(HTML).

The directory containing Clover
historical data as produced by
the <clover-historypoint> task.

Restricts the report to a
particular package.

Specifies the date before which
data points will be ignored. The
date must be specified either
using the default
java.text.SimpleDateFormat for
your locale or using the pattern
defined in the "dateFormat"
attribute.

Specifies the date after which
data points will be ignored. The
date must be specified either
using the default
java.text.SimpleDateFormat for
your locale or using the pattern
defined in the "dateFormat"
attribute.

Specifies a date format string
for parsing the "from" and "to"
fields. The string must contain
a valid

Clover 1.3.13 User Manual

Required
No

No; default is to not render the
report title as a hyperlink.

No; defaultis "_top

Yes

Yes

No

No

No

No; default set to
java.text.SimpleDateFormat

using the default pattern and
date format symbols for the

Page 22

Clover 1.3.13 User Manual

java.text.SimpleDateFormat default locale.
pattern.

Nested elements of<current>

<fileset>

<current> supports nested filesets which control which source files are to be included in a
report. Only classes which are from the source files in the fileset are included in the report.
This allows reports to focus on certain packages or particular classes. By using Ant's fileset
selectors, more complicated selections are possible, such as the files which have recently
changed, or files written by a particular author.

<sour cepath>

Specifies a Ant path that Clover should use when looking for source files.

Nested elements of <historical>

These elements represent individual sections of the historical report. If you do not specify
any of these elements, all the sections will be included in the report. If you specify more one
or more of these elements, only the specified sections will be included. You may specify
multiple <overview> and <coverage> elements in the historical report. These may have
different properties and include different elements. The charts will appear in the report in the
same order they appear in the <historical> element. The <movers> element always appears at
the end of the report following these charts regardless of its location in the <historical>
element. <historical> element.

<overview>
Specifies a section that provides summary of the total percentage coverage at the last history
point. This element does not support any attributes.

<cover age>

Specifies a chart showing percentage coverage over time.

Parameters
Attribute Description Required
include A comma or space separated No; the default is that

Page 23

<metrics>

Clover 1.3.13 User Manual

list of coverage metrics to everything is included
include in the chart. Valid

values are: br anches,
st at enent s, net hods,
t ot al

Specifies a chart showing other metrics over time.

Parameters
Attribute

include

logscale

<movers>

Description Required

A comma or space separated No; defaults to | oc, ncl oc,
list of metrics to include in the nmet hods, cl asses

chart. Valid values are: | oc,

ncl oc, st atenent s,

net hods, cl asses,

files, packages

Specifies that a log scale be No; default is "true"
used on the Range Axis. This

can be useful if you are

including, say LOC and

packages in the same chart.

Specifies a table that shows those classes that have a coverage delta higher than a specified
threshold over a specified time preiod.

Parameters
Attribute

threshold

range

Description Required

The absolute point change in | No; defaults to 1%
percent coverage that class

must have changed by for

inclusion. e.g "10%".

The maximum number of | No; The defaults to 5
classes to show. If the value is

5, then a maximum of 5

"gainers" and 5 "losers" will be

shown.

Page 24

Clover 1.3.13 User Manual

interval The time interval over which | No; The default is to take the
the delta should be calculated ' delta of the last two history
(from the last history point). points
Uses the Interval format. The
range is automatically adjusted
to the closest smaller interval
available.

The <format> Element

Specifies the output format and various options controlling the rendering of areport.

Parameters
Attribute Description Required

type The output format to render the | Yes, unless refid is set
report in. Valid values are pdf
xm , htm . Note that not all
reports support all formats.

refid the id of another format No
element that will be used for

this report. See Sharing Report
Formats.

id the id of this format element. No

bw Specify that the report should ' No; defaults to "false”
be black and white. This will
make HTML reports smaller
(with no syntax hilighting) and
make PDF reports suitable for
printing on a non-colour printer.

orderBy Specify how to order coverage No; defaults to PcCover edAsc

tables. This attribute has no
effect on XML format. Valid
values are:

Al pha

Alpabetical.

PcCover edAsc

Percent total coverage,

ascending.

PcCover edDesc

Percent total coverage,

descending.

El enent sCover edAsc

Page 25

noCache

srcLevel

filter

pageSize

showEmpty

tabWidth

maxNameLength

Total elements covered,
ascending

El enent sCover edDesc
Total elements covered,
descending

El enent sUncover edAsc
Total elements uncovered,
ascending

El ement sUncover edDesc
Total elements uncovered,
descending

(HTML only) if true, insert
nocache directives in html
output.

if true, include source-level
coverage information in the
report.

comma or space separated list
of contexts to exclude when
generating coverage reports.

See Using Contexts.

(PDF only) Specify the page
size to use. Valid values are
A4, LETTER

If true, classes, files and
packages that do not contain
any executable code (i.e.
methods, statements, or
branches) are included in
reports. These are normally not
shown.

(Source level reports only) The
number of space chars to
replace TAB characters with.

The maximum length in chars
of package or classnames in
the report. Longer names will
be truncated. A value < 0
indicates no limit.

Examples of Current Report Configurations

Clover 1.3.13 User Manual

No; defaults to "false"

No; defaults to "true"

No

No; defaults to "A4"

No; defaults to "false"

No; defaults to 4

No; defaults to no limit

Page 26

Clover 1.3.13 User Manual

<cl over-report>
<current outfile="current.xm"/>
</cl over-report>

Generates an XML report of the current coverage.

<cl over-report>
<current outfile="current.pdf">
<format type="pdf"/>
</current>
</cl over-report>

Generates a PDF report of the current coverage.

<cl over-report>
<current outfile="clover_htm" title="My Project" summary="true">
<format type="htm"/>
</current>
</ cl over-report>

Generates a summary report, in HTML with a custom title. Note, the "outfile" argument
requires adirectory instead of afilename.

<cl over-report>
<current outfile="clover_htm" title="Uil Coverage">
<format type="htm " orderBy="El ement sCover edAsc"/ >
</current>
</ cl over-report>

Generates a detailed coverage report in HTML with output ordered by total number of
covered elements, rather than percentage coverage.

<cl over-report>
<current outfile="clover_htm" title="My Project">
<format type="htm "/>
<sour cepat h>
<pat hel ement pat h="/sone/ ot her/| ocati on"/>
</ sour cepat h>
</current>
</ cl over-report>

Generates a sourcelevel report in HTML. Clover will search for source files in the directory
/some/other/location.

<t st anp>
<format property="report.limt" pattern="MWM dd/yyyy hh: mm aa"
of fset="-1" unit="nmonth"/>
</ tstanp>
<cl over-report>
<current outfile="report-current"
titl e="Coverage since ${report.limt}">

Page 27

Clover 1.3.13 User Manual

<fileset dir="src/min">
<date datetime="${report.linmt}" when="after"/>
</fileset>
<format srclevel ="true" type="htm"/>
</current >
</cl over-report>

This example generates a current coverage report for all filesin the project that have changed

in the last month. Replacing the <date> selector with <cont ai ns t ext =" @ut hor
John Doe"/ > would generate a coverage report for all code where John Doe is the author.

<cl over-report>
<current outfile="report-current” title="Coverage">
<fileset dir="src">
<patternset refid="clover.files"/>
</fileset>
<format srclevel ="true" type="htm"/>
</current>
</cl over-report>

In this example the standard Clover patternset is used to restrict the report to the currently
included source files. You could use this if you have changed the exclude or include
definitions in the <clover-setup> task and you have not removed the coverage database. It
will prevent classes, currently in the database but now excluded, from being included in the
report. It is prudent, however, to delete the coverage databse, coverage information and
recompile when you change these settings.

Examples of Historical Report Configurations

<cl over-report>
<hi storical outfile="historical.pdf"
hi storyDi r="cl over _hi story">
</ historical >
</ cl over-report>

Generates a historical report in PDF. Assumes that <clover-historypoint> has generated more

than one history file in the directory "clover_history". Writes the output to the file specified
in the outfile parameter.

<cl over-report>
<hi storical outfile="two _nonths" title="My Project"
from="020101" to="020301" dateFor mat ="yyMwd"
hi storyDi r="cl over _hi story">
<format type="htm"/>
</ historical >
</ cl over-report>

Generates a basic historical report in HTML for a certain time period. Clover will scan the
history dir and use any history points that fall within the requested time period. The outfile

Page 28

Clover 1.3.13 User Manual

attribute will be treated as a directory; afile hi st ori cal . ht m will be written into this
directory. If the directory doesn't exist, it will be created.

<cl over-report>
<hi storical outfile="report.pdf" title="My Project"
hi storyDi r="cl over _hi story">
<overvi ew >
<nmovers threshol d="5% range="20" interval ="2w'/>
</ historical >
</ cl over-report>
Generates a PDF historical report that only includes an overview section (showing summary
coverage at the last history point) and a movers table showing classes that have a code
coverage delta of greater than +- 5% over the two weeks prior to the last history point. Will

include at most 20 gainers and 20 losers.
3.4.4. <clover-historypoint>

Description

Records a coverage history point for usein historical coverage reports.

Parameters
Attribute Description Required
historyDir The directory where historical | Yes
data is stored.
initstring The initstring of the coverage | No; If not specified here, you
database. must ensure <clover-setup> is
called prior the execution of this
task.
date Specifies an override date for No; defaults to the timestamp
this history point. This allows | of the current coverage data.
for generation of past historical
data for a project.
dateFormat Specifies a date format string No; default set to
for parsing the "date" attribute. ' java.text.SimpleDateFormat
The string must contain a valid | using the default pattern and
java.text.SimpleDateFormat date format symbols for the
pattern. default locale.
filter comma or space separated list | No

of contexts to exclude when

Page 29

Clover 1.3.13 User Manual

generating the historypoint.
See Using Contexts.

span Specifies how far back in time No; Defaults to "0s".
to include coverage recordings
from since the last Clover build.

See Using Spans.
Nested elements of<clover-historypoint>

<fileset>

<clover-historypoint> supports nested filesets which control which source files are to be
included in a historypoint. Only classes which are from the source files in the fileset are
included in the historypoint. This allows historypoints to focus on certain packages or
particular classes. By using Ant's fileset selectors, more complicated selections are possible,
such as the files which have recently changed, or files written by a particular author.

Examples

<cl over-hi storypoi nt historyDir="cl over-historical"/>
Records a history point into the directory PRQIECT DI R/ cl over - hi st ori cal

<cl over - hi storypoi nt historyDir="cl over-historical"
dat e="010724120856"
dat eFor mat =" yyMvddHHNMES" / >

Records a history point, with the effective date of 24/07/01 12:08:56
3.4.5. <clover-check>

Description

Tests project/package code coverage against criteria, optionally failing the build if the criteria
are not met. This task needs to be run after coverage has been recorded.

Parameters

Attribute Description Required

Page 30

Clover 1.3.13 User Manual

target

methodTarget

statementTarget

conditionalTarget

initstring

haltOnFailure

failureProperty

filter

span

The target percentage total
coverage for the project. e.qg.
"10%"

The target percentage method
coverage for the project.

The target percentage
statement coverage for the
project.
The target percentage
conditional coverage for the
project.

The initstring of the coverage
database.

Specifies if the build should be
halted if the target is not met.

Specifies the name of a
property to be set if the target is
not met. If the target is not met,
the property will contain a text
description of the failure(s).

comma or space separated list
of contexts to exclude when
calculating coverage. See

Using Contexts.

Specifies how far back in time
to include coverage recordings
from since the last Clover build.

See Using Spans.

Nested elements of <clover-check>

<package>

Specifies atarget for a named package.

Parameters

Attribute

Description

At least one of these, unless
nested <package> elements
are specified.

No; If not specified here, you
must ensure <clover-setup> is
called prior the execution of this
task.

No; default is "false"

No

No

No; Defaults to "0s".

Required

Page 31

Clover 1.3.13 User Manual

name The name of the package. exactly one of these
regex Regular expression to match
package names.
target The target percentage total @ Atleast one of these.
coverage for the package. e.g.
IIlO%Il
methodTarget The target percentage method
coverage for the package.
statementTarget The target percentage
statement coverage for the
package.
conditionalTarget The target percentage
conditional coverage for the
package.
Examples

<cl over-check target="80%/>

Tests if total percentage coverage is at least 80%. If not, a message is logged and the build
continues.

<cl over-check target="80%
hal t OnFai | ure="true"/>
Tests if total percentage coverage is at least 80%. If not, a message is logged and the build
fails.

<cl over-check target="80%
fail ureProperty="coverageFail ed"/>
Tests if total percentage coverage is at least 80%. If not, a message is logged and the project
property cover ageFai | ed isset.

<cl over-check target="80%
<package nane="com acne. ki | | erapp. core" target="70%/>
<package name="com acne. kil |l erapp.ai" target="40%/>
</ cl over - check>

Tests:
» total percentage coverage for project is at least 80%

» total percentage coverage for packagecom acne. ki | | er app. cor e isat least 70%
« total percentage coverage for packagecom acne. ki | | er app. ai isat least 40%

Page 32

Clover 1.3.13 User Manual

If any of these criteriaare not met, amessage is logged and the build continues.

<cl over-check target="80%
filter="catch">
<package name="com acne. kil | erapp. core" target="70%/>
<package nane="com acne. kil |l erapp. ai" target="40%/>
</ cl over - check>

As above, but don't include coverage of cat ch blocks when measuring criteria.

<cl over-check target="80% conditional Target="90%
filter="catch">
<package nanme="com acne. kil | erapp. core"” target="70%/>
<package name="com acne. kil | erapp.ai " target="40%/>
</ cl over - check>

As previous example, but also ensure project conditional coverageis at |east 90%.

<cl over - check>
<package regex="com acne. ki || erapp.core.*" target="70%/>
</ cl over - check>

Testsif coveragefor com acne. ki | | er app. cor e and al subpackagesis atleast 70%.
3.4.6. <clover-log>

Description

Reports coverage information to the console at different levels.

Parameters
Attribute Description Required
initstring The initstring of the coverage | No; If not specified here, you
database. must ensure <clover-setup> is
called prior the execution of this
task.
level Controls the level of detail No; defaults to "summary"
included in the report. Valid
values are sunmary, cl ass,
nmet hod, st at enent
filter comma or space separated list | No

of contexts to ignore when
calculating coverage. See

Using Contexts.

Page 33

Clover 1.3.13 User Manual

span Specifies how far back in time No; Defaults to "0s".
to include coverage recordings
from since the last Clover build.

See Using Spans.

Nested elements

<Package>

Specifies a named package to restrict the report to. Multiple <package> elements can be
specified.

Parameters

Attribute Description Required

name The name of the package to | Yes
include.

<Sour cepath>

Specifies a Ant path that Clover should use when looking for source files.

Examples

<cl over-1og/ >
Prints a summary of code coverage to the console.

<cl over-1 og>
<package name="com acne. kil | erapp. core"/ >
</ cl over -1 og>
Prints a summary of code coverage for the package com acne. ki | | er app. cor e to the

console.

<cl over-1log | evel ="st atenment" > .
<package name="com acne. ki |l | erapp. core"/ >
</cl over-| og>

Prints detailed (source-level) code coverage information for the package
com acne. ki | | er app. cor e to the console.

<cl over-1log | evel ="statenment"
filter="catch">
<package name="com acne. kil | erapp. core"/ >

Page 34

Clover 1.3.13 User Manual

</ cl over-1 og>

As above, but catch blocks will not be considered in coverage reporting.

<cl over-1log | evel ="statenment">

<sour cepat h>
<pat hel enment
</ sour cepat h>
</cl over-| og>

pat h="/some/ ot her/| ocati on"/>

Prints source-level coverage report to the console. Clover will look for source files in the

directory /some/other/location.
3.4.7. <clover-view>

Description

Launches the Swing coverage viewer. The Ant build will pause until the viewer is closed.

Parameters
Attribute

initstring

span

tabwidth

Nested elements

<sour cepath>

Description

The initstring of the coverage
database.

Specifies how far back in time
to include coverage recordings
from since the last Clover build.

See Using Spans.

Specifies tabwidth to use when
rendering source files.

Required

No; If not specified here, you
must ensure <clover-setup> is
called prior the execution of this
task.

No; Defaults to "0s".

No;

Specifies a Ant path that Clover should use when looking for source files.

Examples

<cl over-vi ew >
Launches the viewer.

Page 35

<cl over-vi ew>
<sour cepat h>
<pat hel enent
</ sour cepat h>
</ cl over-vi ew>

pat h="/sone/ ot her/| ocati on"/ >

Clover 1.3.13 User Manual

Launches the viewer. Clover will look for source filesin the directory /some/other/location

3.4.8. <clover-clean>

Description

Delete the coverage database and associated coverage recording files.

Parameters

Attribute

initstring

keepdb

verbose

haltOnError

Examples

<cl over-cl ean/ >

Description

The initstring of the database to
clean.

Keep the coverage database
file. If "false", the coverage
database will be deleted.
("true"/"false").

Show the name of each deleted
file ("true"/"false").

Controls whether an error (such
as a failure to delete a file)
stops the build or is merely
reported to the screen
("true"/"false").

Deletes all of the coverage recordings.

<cl over-cl ean verbose="true"/>
Deletes all of the coverage recordings, printing out alog statement for each file deleted.

Required

No; If not specified here, you
must ensure <clover-setup> is
called prior the execution of this
task.

No; defaults to "true"

No; defaults to "false"

No; defaults to "false"

Page 36

Clover 1.3.13 User Manual

<cl over-cl ean keepdb="fal se"/ >
Deletes the coverage database and all of the coverage recordings.

3.4.9. <clover-merge>

Description

Merges several Clover databases to alow for multi-project reports to be generated. To use
with reporting tasks such as <clover-report>, <clover-historypoint> and <clover-view> you
can use the optional "initstring" attribute on these tasks to specify the value of the merged
database.

Parameters
Attribute Description Required
initString The initString of the new | Yes

coverage database. This has to
be a writeable filepath.

Nested elements of <clover-merge>

<clover Db>

Specifies a Clover database to merge.

Parameters
Attribute Description Required
initString the initString of the database to | Yes
merge.
span Specifies how far back in time No; defaults "0 seconds"

to include coverage recordings
from since the last Clover build
for this database.

<clover DbSet>

Specifies an Ant FileSet of Clover databases to merge. Apart from those shown below,
parameters and subelements are the same as for an Ant FileSet.

Page 37

http://ant.apache.org/manual/CoreTypes/fileset.html

Clover 1.3.13 User Manual

Parameters
Attribute Description Required
span Specifies how far back in time No; defaults "0 seconds"”
to include coverage recordings
from since the last Clover build
for all databases matched.
Examples

itString="nergedcoverage. db">
t String="project Acoverage. db"/>
t St ri ng="proj ect Bcoverage. db" span="30 mni ns"/>

<cl over-nmerge i
<cl overDb in
<cloverDb in

</ cl over - ner ge>

Produces a merged database containing the measured coverage of project A and project B.

n
i
i

<cl over-merge initString="mergedcoverage. db">
<cl over DbSet dir="/home/ projects" span="30 m ns">
<i ncl ude name="**/coverage. db"/>
</ cl over DbSet >
</ cl over - mer ge>

Produces a merged database containing the measured coverage of all databases found under
/home/projects.

3.5. Sharing Report For mats

Y ou can share report formats across a number of reports. This allows you to standardise on a
set of report formats and use these for all your reports.

Standalone format elements are created using the <cl over - f or mat > type. Standalone
formats elements are not compatible with Ant 1.4.1. You require at least Ant 1.5.1 to
use this feature. These standalone types support the same attributes and elements as the
internal <f or mat > elements of the <cl over - r epor t > task. You name the format using
the standard ant "id" attribute.

In order to make the standalone format element available for use in your project, you need to
add a typedef first:

<t ypedef resource="cl overtypes"/>
The following code declares two report formats

<cl over-format id="std.format" srclevel ="true" type="pdf"/>

Page 38

Clover 1.3.13 User Manual

<cl over-format id="bw format" bw="true" srclevel ="true" type="pdf"/>

In this example, the first format is for source level, PDF reports. It is named "std.format".
The second format, "bw.format”, is essentially the same except it specifies black and white
output.

Once the format is declared with an identifier, it can be used by reference with a "refid"
attribute. Thisis shown in the following report example

<cl over-report>
<current sunmary="yes" outfile="report-current.pdf"
title="Ant Coverage">
<format refid="std.format"/>
</current>
</cl over-report>

This report, a summary report, uses the "std.format" format defined above. The refid values
in the <format> elements can be an Ant property allowing selection of the report format at
build time. The following is a complete example

<t arget name="report">
<cl over-format id="std.format" srclevel ="true" type="pdf"/>
<cl over-format id="bw format" bw="true" srclevel ="true" type="pdf"/>
<property nane="format" val ue="std.format"/>
<cl over-report>
<current summary="yes" outfile="report-current. pdf"
title="Ant Coverage">
<format refid="${format}"/>
</current>
<hi storical historydir="clover-hist” outfile="report-history. pdf"
title="Ant Hi storical Coverage">
<format refid="${format}"/>
</ historical >
</ cl over-report>
</target>

Here, we are generating two reports, which share a format. The format defaults to the
standard format, a colour report. This default can be overriden from the command line. To
generate black and white reports you would use:

ant report -Df ormat =bw. f or mat

Page 39

Clover 1.3.13 User Manual

4. |DE Plugin Guides

4.1. Clover IDE Plugins

Clover provides fully integrated plugins for many popular Integrated Development
Environments. The plugins alow you to measure and view code coverage without leaving
the IDE. They are aso compatible Clover for Ant.

4.1.1. Plugin Guides

Eclipse
IntelliJ 3.x

Intellid 4.x
IntelliJ 5.x
JBuilder
Netbeans

JDeveloper

4.2. Eclipse Plugin Guide
Plugin Version 1.2.10

This plugin has been tested with Eclipse 2.1, 2.1.1, 2.1.2, 3.0, 3.1, and 3.2.x ; using JDKs 1.3.x, JDKs 1.4.x, and JDKs 1.5.x.
The plugin has also been tested on WSAD 5.1 (which is based on Eclipse 2.1.1).
This plugin will not work with WebSphere Studio Application Developer v5.0 (WSAD v5.0 is based upon Eclipse 2.0.2).

4.2.1. Overview

The Clover Eclipse Plugin allows you to instrument your Java code easily from within the
Eclipse Java IDE, and to view your coverage results inside Eclipse.

4.2.2. Caveats/ Known problems

Please be aware of the following when using this version of the plugin.

« Thisplugin may not work correctly if you have configured your Eclipse project so that
the Java source and output directories are the same.

« When compiling your Java project with the Clover plugin, you must add and use a Java
Development Kit (JDK) to your list of Installed JRE locations, or give the Clover plugin
aJDK_HOME override value. (see below).

Page 40

http://www.eclipse.org/

Clover 1.3.13 User Manual

« Thisplugin will not work with WebSphere Studio Application Developer v5.0 (WSAD
v5.0 is based upon Eclipse 2.0.2).

» There have been some reported problems when using the plugin with WSAD J2EE
projects, where the build-path contains .JARs that are embedded in an .EAR or WAR.
Thisissueisbeing investigated and afix is slated for the next release.

4.2.3. Installation

1 Locating your Eclipse plugin directory

You will need to locate where you installed Eclipse on your system. The rest of this
document will refer to thislocation as ECLI PSE_HOVE.

2 Removing previous versions of the plugin

It isimportant to remove previous version of the Clover Eclipse plugin.

 Gototothe ECLI PSE_HOVE/ pl ugi ns directory.
* Remove any directory named com cenqua. cl over *

3 Installing the plugin

« Onceyou have downloaded the Clover Eclipse plugin . zi p file, extract it to atemporary
location on your drive. Thiswill create adirectory named com cenqua. cl over _X. X

« Copy thisdirectory to the ECLI PSE_HOVE/ pl ugi ns directory. That is, you should
end up the directory ECLI PSE_HOVE/ pl ugi ns/ com cenqua. cl over _X. X

4 |nstalling the license
« If you don't have one aready, you will need to download acl over. | i cense fileto

activate the plugin. A free evaluation licenseis available from here.
« Copythecl over. | icense fileintothe
ECLI PSE_HOVE/ pl ugi ns/ com cenqua. cl over _x. x directory.
5 Start Eclipse
Next time you start Eclipse, the Clover plugin will be available.
4.2.4. Using the plugin

Setting up a JDK

When compiling your Java project with the Clover plugin, you must specify aJDK for Clover to use.

Page 41

http://www.cenqua.com/licenses.jspa

Clover 1.3.13 User Manual

There are two ways to instruct the Clover plugin which JDK it should use.

1. Set aJDK_HOME override setting on a per-project basis. In the Compilation tab of the
Clover section of your Project properties, enter avalue such as"C:\j2sdk1.4.2" into the
JDK_HOME overridefield.

2. Globally choose aJDK instead of a JRE as your Default JRE.

* In Eclipse, choose "Windows | Preferences’ then select "Java/ Installed JRES".

* Click "Add..." and enter the path to your JDK in the "JRE home directory” field. For
example, enter "C:\j2sdk1.4.2".

» Choose aname (such as"JDK1.4.2") and click "OK".

» Ensure you have this JDK checked as the default build JRE.

Activating the Clover Eclipse plugin

The Clover Eclipse plugin can be activated in any Eclipse project when using the Java (JDT)
perspective.

« Open up the project's properties, by using "Project | Properties’ or right-clicking on the
project in the Package Explorer.

» Select the"Clover" page.

« Togglethe "Enable Clover plugin in the project” checkbox. Y ou can leave the Clover
options at the defaults for now.

« When you hit OK, the Clover Viewer tool should appear on your workbench.

Page 42

Clover 1.3.13 User Manual

Properties for money ;]Q]_’ﬂ

Clover

e ools Builders ¥ Enable Clover plugin in this project
Jawa Buid Fath = Fiibar |

JavacC il
ava t.ompler Initstring s e | L2 0.1 o

Javadoc Locaton | T

Java Task Tags The Initstring specifies where Clover should || Use Ant patternset notation to control
store coverage data. Select 'Automatic' to | | which src files are included for

Praject References have the Clover plugin manage this location | | instrumentation by Clover

for you. Inchudes:
 Automatic { [
" User specified: |

F | relative to project di | |

Excludes:

—Fush Pabcy

The Flush Policy controls how Clower writes
coverage data to disk at runtime,

&~ Cirected
C Interval

Flush every | msecs,

Clover Properties

The Clover Viewer tool

The Clover Viewer tool allows you to control Clover's instrumentation of your Java projects,
and shows you the coverage statistics for each project. The tree shows the package and class
coverage information for each project. Summary statistics are displayed below the tree for
the selected project/package/class.

Page 43

Clover 1.3.13 User Manual

£ Java - MoneyBag_java - Eclipse Platform

File Edit Source Hefactor Mavigate Search Project Run “Window Hel

IS-BEHEE||B -X-B- 2P -||® 5

v X | | Welcome |] classp
tzer
-5;:?.3' Refresh Coverage Data s
Eﬁ Delete Coverage Data ¥
v = Compile with Clowver
e fon3
v Contest Filker nes
(1| Generate Repart... L (&
K
Uze Clover WorkingSet
Edit *WorkingSet pr |
Clear " orkingSet
Ahbout Clover
— Coverage Lapout)
M ethods: 3 /55 96. 4% T
Statementz: 147 /159 926E 0w ——
i i + | 1| Degcription
Conditionalz: 37 / 46 20 4% e = —r
A, thod Mone
TOTAL: 91.2% me— =me
o The method Mone
— Metrics i The method add||
Lines of Code: 429 Clazzez: 4 o Line 61; expressio
M Lines of Code: 308 Files: 4 Y Line B2 statemen
M ethods: R Packages: 1 L Line B3: statemen
| s BF mamr '
Fackage Ex... | Hierarchy | Clover View | JUnit | | Tazks | Congole

Page 44

Clover 1.3.13 User Manual

Clover Viewer

The Clover Viewer is automatically added to the workbench when you enable Clover for
your project. If the viewer is closed, you can open it again using "Window | Show View |
Other..." and selecting "Clover | Clover View".

The viewer allows the following actions:

Show cover age. Toggles the display of coverage information in the Java editors and in
the Tasksllist.

Refresh Coverage Data. Re-loads from disk the Clover coverage data for the selected
project.

Delete Coverage Data. Deletes the recordered coverage data for the selected project.
Compilewith Clover. Toggles the use of Clover instrumentation when Eclipse compiles
the selected Java project.

Context Filter.... Allows you to specify what coverage contexts are shown in the Java
Editor.

Generate Report.... Launches the report generation wizard that will take you through the
steps required to generate a Pdf, Html or Xml. report.

Use Clover WorkingSet. Toggles the use of the Clover WorkingSet. This limitsthe files
Clover will consider when instrumenting and when showing coverage data. Thisis
particularly useful for large projects.

Edit WorkingSet. Brings up adiaog for editing the Clover WorkingSet.

Clear WorkingSet. Empties the Clover WorkingSet. This means Clover will not
consider any fileswhile "Use Clover WorkingSet" is enabled.

Viewing Coverage Results

The Clover Eclipse plugin alows you to view Clover coverage data within the Eclipse IDE.
This may include coverage data created using Clover external to the Eclipse IDE, or
coverage data generated by the Clover Plugin internal to Eclipse.

Page 45

Clover 1.3.13 User Manual

I Line 40, expression evaluated to frue O imes, false 27

J1MoneyBag.java [@ X
return s.addMoney{this); _:Jr

public int amount() {
return famount;

¥
public string currency() {
return fCurrency;

public boolean egualsichiect andhject) A
b

1sZerof;

fimes,

it Canchject instanceof Money) 1
Money aMoney= (Moneylanchject;
return amMoney. currency(). equalscurrency ()

&& amount () == amMoney.amount(];

return false;

¥
pubTlic int hashCode() {

. return fCurrency.hashCode+famount; -
4| | 3
v Tasks (Filter matched 17 of 17 items) W R oY X
| 4’| ! | Crescription | Resource | InFolder =
A Line 40, expression evaluated to true O times, false 27 imes, Money.java money/src
& Line 41: statement not exacuted, Moreyjava moneysre
& Line 42: statement not exacutad, Morey.java | money/srcT
A Line 52 expression evaluated to true © imes, false 14 imes, MoneyBag.... money/src
& Line 53: statement not exacuted. MoneyBag.... money/sre
& Line 54 statement not exacuted, MoneyBag.... money/sre
<J

Line 58 expression evaluated to true © imes, false 12 imes, MoneyBag.... monewizlll
»

=1

Tasks | Console

|'|.l'l|'ri1'-:||v'\.|.-:| Thcart |C‘| (] =

Markers

The Clover plugin shows coverage data in three ways:

Asamarker in the overview bar (right-hand side). This marker has a tooltip indicating
the coverage problem.

Asamarker in the vertical ruler (left-hand side). This marker has a tooltip indicating the
coverage problem.

Asawarning item in Eclipse Tasks list. If you do not want coverage warnings to appear
in the task list, you can filter them out using the Tasks list filter preferences. Note that

Page 46

Clover 1.3.13 User Manual

warnings associated with afile will appear in the Tasks list only for those files that are
currently opened by an editor.

£ Filter Tasks - x|

F Limit visible items to: | 2000

Show items of type:

= [JFroblem

oneyfarc=—
5. MoneyBag... money/src =

~[F]Cvs Remove

[F] 2ava Problem |

& 0N any resource

T On any resource in same project

" On selected resource only

" On selected resource and its children
 Onworking set: <no wiorking set selected>

Select...

Where description [oontair‘rs El |

™ Where problem severity Is: FlEror F Wanng T Info

™ Where task priority i: F Hgh Finermal T Low

™ Where task status is: I” | Completed ™| ot Completed

Restore Defaults |
| Ck, | Cancel |
Marker Filter

Instrumenting your code

You can use the Clover Eclipse plugin to instrument the Java source in your project each
timeit is built. This option is activated on a per-project basis by toggling the "Compile with
Clover" button in the Clover Viewer.

Online help

Page 47

Clover 1.3.13 User Manual

The Clover Eclipse plugin includes help documentation integrated into the Eclipse help
system.

£+ Help - Eclipse Platform _|o] x|
Search: | | Search scope: All topics
Contents Clover Plugin (BETA) == I a
© workbench User Guide Installing the Eclipse Plugin I

% Java Development User Guide
% Platform Plug-in Developer Gui
% DT Plug-in Developer Guide

1 Locating your Eclipse plugin directory

%PDE Guide . . .
B Clover Plugin (BETA) You will need to locate where vou installed Eclipse on wour
B Ovemiew" system. The rest of this document will refer to this locatio

B cavestsknown prablerns 8% ECLIPSE HOME, i

B Tnztalline

B Uzing in ywour project

2 Removing previous versions of the plugin

B Caonfguration aptions

B Fag
[t is important to remove previous version of the Clover
Eclipse plugin,
<| | ﬂ + Go to to the ECLIPSE HOME/plugins directory. -
B o # @ |4 | 4
Help

Deactivating the Clover Eclipse plugin

Y ou can disable Clover instrumentation using the "Compile with Clover" button, and you can
prevent coverage information from being displayed in the Java editors by toggling the " Show
Coverage" button.

But if you want to completely de-activate Clover support in a project, then un-check "Enable
Clover plugin in the project” on the Clover page of the project’s properties dialog.

Disabling Clover in this way will require a full rebuild of that project. If thisis undesirable
then you can simply toggle the "Compile with Clover" and "Show Coverage" options.
4.2.5. Configuration options

The Clover Eclipse plugin's configuration can be accessed in two places;, @ from the
"Clover" page of a project's properties dialog (Project | Properties), and b) from the "Clover"

Page 48

Clover 1.3.13 User Manual

page of the workspace preferences (Window | Preferences).

Project Properties- I nstrumentation Options

These options control how Clover instrumentation works when "Compile with Clover" is
selected.

Initstring

This controls where the Clover plugin stores (and looks for) the coverage
database. You may want to specify a "User specified" value if you want to view
Clover coverage data generated external to the Eclipse IDE.

Flush Policy

The Flush Policy controls how Clover writes coverage data to disk at runtime.
"Directed" is the default an means coverage data is written to disk when the JVM
exists. "Interval" allows you to specify that coverage data should be written out at
regular intervals. See Flush Policies.

Filtering Includes/Excludes

If you do not want all of your source instrumented, then you can control which
this using these two Ant patternsets. For example, you may prevent
instrumentation of files in the "remote” package using an "Excludes” value of
**[renotel *. | ava.

Project Properties- Compilation Options
These options allow you to specify how Clover will compile your instrumented files.

Fork compiler into separate JVM

If enabled, Clover will launch a separate JVM to compile your instrumented files.
Heap size of compiler JVM

The heap size of the forked JVM (in MB). Leave blank to use the default.

Project Properties - Filter Options

These options allow you to define custom coverage filters.

Name

The name for this context. Must be unique, a valid java identifier and not be one
of the reserved context names

Type

The type for this context. A method context type matches against method
signatures, and a statement context type against statement signatures.

Regexp

A Perl 5 Regexp that defines the context. This regexp should match the

Page 49

Clover 1.3.13 User Manual

signatures of the method/statement you wish to include in this context. Note that
when signatures are tested against this regexp, whitespace is normalised and

comments are ignored.

See Coverage Contexts for more information.

Clover Preferences

Preferences

—|o] %]
- Workbench Clover
- ANt
—Delete existing coverage data each rebiild?
& Yes
- © Mo
- Help M Prompt each rebuild
H-Instal Update _
5 Java — Wigwer
m- Plug-In Development I Automatically refresh coverage data
H-Team Refresh frequency: ISS v|
Span. | 2 days
Specifies how far back data should be loaded,
since last compile, {e.g. 305", '3 days', '2 mo',
"1 year', or just blank for O seconds)
Restore Defallts Apply |
Import... Export... Ok Cancel |

Page 50

Clover 1.3.13 User Manual

Clover Preferences

Deleting existing coverage data

When your rebuild a project, Clover will ask you whether you want to delete the
existing coverage information. This section allows you to specify what the default
action should be, and whether Clover should prompt you at all.

Automatically refresh coverage data

If enabled, the plugin will check for updated coverage data at the frequency given
below. If it is not enabled, then you will need to use the "Refresh Coverge Data"
button to see newer coverage data.

Span

The span attribute allows you to control which coverage recordings are merged
to form a current coverage report. For more information, see Using spans

4.2.6. Large Projects

It is common for developers to work in different ways when working on an extremely large
project compared to small/medium sized projects. For example, doing a complete rebuild
then running all the unit tests can take hours for some projects. For this reason, some
developers may want to focus only on a few files or packages at atime. The Clover Eclipse
plugin has a Working-Set mode to assist in this style of development.

The Clover Working-Set

Eclipse has an inbuilt concept of a Working-Set, which allows you to specify a subset of the
Workspace that you want to consider. Clover can use one of these Working-Sets to:

o Limit thefilesthat will be instrumented by the Clover plugin.

« Filter the files/packages/directories for which Clover will display coverage information.
Thisincludes filtering the coverage statistics. For example, Clover will report 100%
coverage if just all the files in the Working-Set are covered.

Page 51

Clover 1.3.13 User Manual

£ Java - MoneyBag_java - Eclipse Platform

File Edit Source Hefactor Mavigate Search Project Run “Window Hel

IS-BEHEE||B -X-B- 2P -||® 5

v X | | Welcome |] classp
tzer
-5;:?.3' Refresh Coverage Data s
Eﬁ Delete Coverage Data ¥
v = Compile with Clowver
e fon3
v Contest Filker nes
(1| Generate Repart... L (&
K
Uze Clover WorkingSet
Edit *WorkingSet pr |
Clear " orkingSet
Ahbout Clover
— Coverage Lapout)
M ethods: 3 /55 96. 4% T
Statementz: 147 /159 926E 0w ——
i i + | 1| Degcription
Conditionalz: 37 / 46 20 4% e = —r
A, thod Mone
TOTAL: 91.2% me— =me
o The method Mone
— Metrics i The method add||
Lines of Code: 429 Clazzez: 4 o Line 61; expressio
M Lines of Code: 308 Files: 4 Y Line B2 statemen
M ethods: R Packages: 1 L Line B3: statemen
| s BF mamr '
Fackage Ex... | Hierarchy | Clover View | JUnit | | Tazks | Congole

Page 52

Clover 1.3.13 User Manual

Clover Viewer

The Clover Working-Set can be manipulated via the tool menu in the Clover Viewer and by
the context menu on files, packages and projects.

impoxrt Jjava.util.*;

- {default package)
SR Ioney . jays JEE
[Money.je MNew g * K MoneyBag defers exchange
41 MoneyBs Open * 12 8wiss Francs to 14 U3 Do
=[] MoneyTe : containing e two Monies
Y Open With v . t the t M 1
L CWS > _ * 10 Swiss francs gives a bag
. Open Type Hierarchy +
E System Lk the deferred exchange rate
nit-3.8. 1.jar - o8 Cuit * MoneyBag with different exc
5 [Copy . |
Jid.x=ml I Paste * A MoneyBag 13 represented a
| * different constructors to cC
#® Delete X/
Source v .
; , class MoneyBag implements IMon
Refactor private Vector fMonies= ne
g4y Import... _
£y Export... static IMoney create (IMone
MoneyBag result= new M
References ¢ ml.appendTo (result) ;
Dreclarations » me .appendTo {result) ;
return result.simplify
@0 Refresh |
Team 3 public IMoney add {(IMoney m
Compare With " return m.addMonevBag (t
Replace With » })
Restore from Local History. .. public IMoney addMoney (Mon
- = =~ te
Froperties public TIMoney addMonevyBagi!

return MoneyBag.create
«|
Add/Remove Working-Set

Page 53

Clover 1.3.13 User Manual

Enabling the Clover Working-Set is a Workspace-wide setting; it affects all projects in
Eclipse. If you have an "Excludes" setting on a project (in the Clover section of the Project
Properties), then those files are excluded in addition to those excluded by the Working Set.
Similarly, if you have an "Includes’ setting, then only those files that are included in both
this setting and the Working-Set are Instrumented by Clover.

4.2.7. Working with custom filters.

For the sake of this example, let us assume that we want to remove al private methods from
the coverage reports. How would we go about this?

Open the configuration panel "Clover | Filters".

Select the Add button to create a new Regexp Context Filter.

Set thenameto pri vat e.

Since we are creating this filter to filter private 'methods, specify the Met hod type.
We now need to define regular expression that will match al private method signatures.
That is, aregexp that will match any method with the pr i vat e modifier. An example of
sucharegexpis(.*) ?private .*.Enterthisregexp intheregexp field.

« When afilter has been newly created or edited, a (*) will be displayed next to its name.
Thisindicates that the filter is currently ‘'unavailable for use. To make this new filter
available, you will need to run aclean build of your project. Once available, you will
noticethe pri vat e filter appear in the Context Filter Dialog. Y ou will now be able to
filter private methods out of your Clover coverage calulations and reports.

4.2.8. FAQ

Q: Why, when doing a build, do | get an error dialog with the message " Clover build
error. Error running javac.exe compiler” ? Why do | need to configure a JDK instead of
a JRE for my project?

In order to compile your instrumented source code, the Clover Plugin needs to find the
"Javac" command that comes with the JDK. The plugin does not use Eclipse's inbuild Java
Builder.

Q: I'verun my tests, but coverage information does not show in Eclipse.
Y ou may need to press the Refresh Button in the Clover tool window.

Q: Why can | only see coverage data for the last test case | executed? Why does my
cover age information disappear each timel compileafile?

By default, Clover will display the coverage information gathered since your last compile.
Y ou can change how far back in time Clover will ook for coverage data by setting the Span

Page 54

Clover 1.3.13 User Manual

parameter in the Clover page in the Workspace preferences (Window | Preferences).

4.3. Clover IDEA 3 Plugin User Guide
Plugin Version 0.8 Beta

The Clover IDEA 3 Plugin is currently a beta version. The plugin has been tested with IntelliJ IDEA versions 3.0.x.

4.3.1. Overview

The Clover IDEA Plugin alows you to instrument your Java code easily from within the
IntelliJ IDEA 3.x JavaIDE, and then view your coverage resultsinside IDEA.

Page 55

Clover 1.3.13 User Manual

L tutorialipr - [C0apps' chover-1.1.1 buborial] - 2 apps’ clover-1.1.1 tukorial, src' Money . java - Intellil TRES 304 ‘-Lnl!l

File Edt Search Wew Goto Code Refactor Buld Clover Run Took Options Window Help

I“EQ|‘1‘* Db RAA | 4E|G [T Mvpi|t_1.—|.@a‘-|@

jclovs i e ey TR T «
- o2 &|¥ B Moncyjova | lmiﬁw 1 bl .
& D Project (90.9%) 28 | return new nomy(nmmt[]-h u:mmt[] ourrencyi]) : L
I (= a1 default-pkg (90,5%) 2q u
] € A (o) an | Object foo = (m.currency(} == npull ? “pull® : “"4@, cuccencyi)b: sl
z L3 Moy (-) 31 >
:31- C Maney (39.6%) sz | Object fool: ?
o £ MareyBag (87.3%) 33 b
! L ManeyTest (97, 7%) 34 | returan MoneyBag. create (bhis, m):
35 i
36 ulE public THoney addMoneyBag(MoneyBag =] |
37 | return 5. addMoney (this) ;
38 }
38 |E peblic ist anounc(] |
40 | [return fAmount :
41)
42 |l_l public String curzency () {
a | [return FOUrrency:
44 H
a5 tx|-] public bonlesan equals[dbject anlbject) {
a6 if (isZeral)) =
47 if (anfbject imstanceof IMoneyw)
a8 return {{INoney)anobject).iaZero(]:
449 if (enlbject instamceof Money) |
50 Homey aHoney= ([Money]anObject:
51 | return aMoney.cucrency|) . equals|{cuctcency|))
L1 &6 AROUNT()] == aMoney.amount(]:
53 I
[feerage 54 | retwrn false:
Metheds: 14 /14 100% I | | |55 i)
Statements: 25 /27 92.6% DN 56 "‘lE’ public int hashCode(} |
cm 518 ::§= :: |[! return fCurrency.hashCode || +Emount ;
- IMiskrics 1]
Linesof Code: - 81 Classes: -| | |60 t2|E] publie boolean isZera() |
WC Lines of Code: 62 Rl -| | |81 || return amount{] == 0:
Methods: 14 Packages: || |s7 ; I Ill.

Po2Run = 6 TODO hy ChuckSiyke

| [ED | |[msert | popup vintst on || somorza [T
Clover IDEA plugin

4.3.2. Installing the plugin

To install the plugin:

1. shutdown any running instances of IDEA
2. remove any previous versions of the the clover plugin jar from | DEA_HOVE/ pl ugi ns.
3. copy CLOVER HOWE/ | i b/ cl over | deaPl ugi n. j ar into the

| DEA_HOVE/ pl ugi ns directory, and restart IDEA.

4.3.3. Using the plugin

Page 56

Clover 1.3.13 User Manual

Enabling the Clover Plugin for your project

Addcl over | deaPl ugi n. j ar toyour project classpath:
» Open the project properties "File | Project Properties’.
* Inthe"Paths" section, select the "Classpath” tab. Remove any old clover jars and add a

referenceto cl over | deaPl ugi n. | ar (you must reference the
cl over |l deaPl ugi n. j ar that youinstalledin| DEA HOVE/ pl ugi ns).

(Thecl over | deaPl ugi n. j ar needsto bein the classpath because it is needed at
runtime when you are running your unit tests. It is also needed when you are compiling
with Clover)

Building your Project with Clover

Clover works by pre-processing your Java files before they are compiled. This means that
when you want to measure coverage with Clover, you cannot use the standard IDEA
"Rebuild Project” or "Make Project” functionality. Instead, you need to use either "Clover |
Rebuild Project with Clover" (for a full rebuild), or "Clover | Make Project with Clover”
(builds only modified files). The "Make Project with Clover" action can also be launched
with the toolbar button
et
Clover Compile Button

Clover collects code coverage by instrumenting a copy of your Java files before they are compiled. If you "Build with Clover”,
then re-compile some of your files normally with IDEA, those files will no longer be instrumented; and coverage will not be
collected for them until you do another "Build with Clover".

Build Options

Page 57

Clover 1.3.13 User Manual

(1) Build Project with X|

[v| Delete existing Coverage Data
[v] Show this dialog in future

Zornpile Cancel

build dialog
Show Compiler Console
Check this box to see output from the Clover build process.
Delete existing Coverage Data

(option only appears on a full rebuild) This option alows you to delete existing coverage
data and registry information before the build.

Show thisdialog in future

Uncheck this box if you don't want this dialog appearing for future builds. You can enable
the dialog again viathe Clover Project Properties screen.

Viewing Cover age Results

Once you have instrumented your code (see Building your Project with Clover), each time
you run your application or a unit-test Clover will record the code coverage. Once the
application or unit-test exits, the coverage information is available for viewing using IDEA.

The coverage information can be browsed using the Clover Tool Window. This presents the
datain asimilar way to the existing Clover GUI Viewer.

The top pane of the Tool Window contains a class browser with inline coverage information:

Page 58

Clover 1.3.13 User Manual

Cover @@ =

o

=
HHoz=>
léﬂl €9 Project (90,9%)

o | =F e | default-plg (90.9%)

E Coa (D%

% I IMoney -

I . Money (59,8%)
& C MoneyBag (87,3%)
T . MoneyTest (97.7%:)
i

<

Clover class browser

Thetool bar at the top of the browser contains the following buttons

Flatten Packages. With this selected, only concrete packages are shown in the browser.
Autoscroll to Sour ce. With this selected, asingle click on a class in the browser will
load the corresponding source file in an editor pane, with coverage info overlaid.
Refresh. Reloads coverage data.

Expand All. Expand all nodesin the browser.

Collapse All. Collapse all nodes in the browser.

Set Context Filter. Launches adialog to set the context filter:

S =
(B)Set Context Filter _ X

Select the block contexts o ignore in coverage calculations

[Finally []instance [cakch [] constructar

[] else []da [] sync []if
[] wihile [Ery [] switch [] method
[] assert [] Far [] static

Apply | Reset Cancel

Page 59

Clover 1.3.13 User Manual

Context Filter Dialog

The bottom pane of the Tool Window contains Coverage and other Metrics information for
the currently selected node in the browser:

Coverage

Methods; 14 / 14 100% I
Statements: 25 [27 92.6% D
Conditionals: 58 62.5% D

TOTAL: 39,3% .
—Mekrics

Limes of Code: a1 Classes: -

MC Lines of Code: Az Files: -

Methods: 14 Packages: -

Coverageinfo view

In addition, the plugin can annotate the Java code with the coverage information. This can be
turned on using the "Clover | Show Coverage' menu option, or by pressing the Show
Coverage

(o
view coverage button
toolbar button.

42 = public String currency() |

43 return fCurrency;

a4 L B

45 tael= public hoolean equals(Object anlbject) {

a5 if [(isZerol))

47 if [anObject instanceof IMoney) I

ad e R |Ling 47: statement not executed. |
49 if [anObject instanceof Mohey) |

&0 Money aloney= (Monevy)anObject;

bl return alMonevy.currency().equals(currency())

52 && amount() == aMonevy.amount|);
53 I3

editor pane with overlaid coverage information

I1f you do not have "Auto Coverage Refresh” enabled, you will need to press the Refresh Button in the Clover Tool Window to
see the updated coverage information.

Page 60

Clover 1.3.13 User Manual

If a source file has changed since a Clover build, then awarning will be displayed aerting you to fact that the inline coverage
information may not be accurate. The coverage hilighting will be yellow, rather than the red shown above.

4.3.4. Configuration Options

Configuration options for Clover are accessible on the Clover panel of the Project Properties

diaog.

Compilation options

Z.:FJ.:_.Frujr:r_l Properties - Clover

¥ Emable Clower Plugin

| (2] Compilation | (g5 Viewer |
Inkstring

The Initstring specifies where Clover should
store coverage data, Select "Automatic’ to
have Claver manage this location for you
{relative to your project directory).

& Automatic
(0 User SpecFied:

~Filering

[relative to project dir

~Flush Policy

The Fush Policy controls how Clover writes
coverage data bo disk at runtime.
() Directed

1 Interval. Flushevery | 00 msecs

Lse Ank patternset notation to control which src Ales are included For
instrumentation by Clover.,

Includes:

Excludes:

Use Ant patternset notation bo control which src files are instrumented by Clover
using & inner class, This instrumenkabion method preseves the public interface of
the class,

LseClass Includes:

Useilass Excludes:

[

~Compilation with Clowver

Heap Size: | 125| meg
[¥] Target fdki .4

These sattings control the Clover compilation process,

[#] [Fun compiler in separate process! [Delete Coverage Data on Rebuld (v Inchude debug info in compilstion
s Show compiler console
[¥ Werbase compilation log

[l Shows Compile confirm dislog

o][comn |[_nu | _rp

Initstring

Compiler configuration screen

Page 61

Clover 1.3.13 User Manual

This section controls where the Clover coverage database will be stored. Select 'Automatic'
to have Clover manage this location for you (relative to your project directory). Select 'User
Specified' to nominate the path to the Clover coverage database. Thisis useful if you want to
use the plugin in conjunction with an Ant build that already sets the location of the Clover
coverage database.

Flush Policy

The Flush Policy controls how Clover writes coverage data to disk at runtime. See Flush
Policies.

Compilation with Clover

These settings control how the Java compiler operates when building your project with
Clover.

Filtering

Allows you to specify a comma separated list of set of Ant Patternsets that describe which
filesto include and exclude in instrumentation. These options are the same as those described
in the <clover-setup> task.

Viewer options

Page 62

Clover 1.3.13 User Manual

:::_[J_.:IFI'IJjEEt Properties - Clover

x
M0 [w! Enable Clower Plugn
Campller
;[} | E::} Compilation I Eﬁ Viewer |
RunfDebug ~aeneral riConkext Fiter _ - _
[7] Load coversge daka at startup Select the block contests to ignore in coverage cakculations
% 7] Autoscroll ta sourcs [] assert [cateh [constructor [de
Debugger P e [else [Finally] for ml;
Ihi.l [+#] Showe summary in main toclbar [instance [method [static [switch
LC"C:‘:_CS [mwto-refresh coverage data [syne [try [vkl
% .: Source Highlighting
sl : (I Ervor stripe color [¥] Shows coverage info in gutter
‘-‘"} [] Source highlight colar
Weely i
< |
EJB 7
sy
Miscelanecus
chedyle |v|
ok || comcel || apty || rep
Viewer configuration screen
General

Controls the operation of the Clover tool window on the left-hand side of the IDE.

Context Filters

Allows you to specify contexts to ignore when viewing coverage information.

Sour ce Highlighting

Allows you to specify colors used when displaying source level coverage information.

4.4. Clover IDEA 4 Plugin User Guide

Page 63

Clover 1.3.13 User Manual

Plugin Version 1.0.7
System Requirements: IntelliJIDEA 4.5.4

4.4.1. Overview

The Clover IDEA Plugin alows you to instrument your Java code easily from within the
IntelliJ IDEA Java IDE, and then view your coverage resultsinside IDEA.

5] tutorial sereenshats.ipr - [E-\screenshots\tutorial] - [lutorial screenshots] - E:\screenshols\tutanial\sicimaintutorial\Money. java - Intell .. |1

£l

Fle Edt Sesch View GoTo Code Analyze Refaclor Build Run Tools Window Help
CEH@E 5G| X RE|L AE E| U Vo] b B |
Aoee — sa= - e =
£ F N
i] _ public IMoney addMoneyBag(MoneyBag =) | 5'
= @ Money(+) :i |] return 3, sddloney|this) : E_
il o 15 C
il &) Mone;Bag (87.2%) 26 [0 public int swounti) { ¥
» 37 | return fRmownt : E
i ® O) g
39 =
4n [(_: public String currencyi) |
41 | return [Currency; ILine-lU: wethed 4_‘5&““.'
2 O } EniEre
a3 |
44 &t = public boolean equals(lbject anlbject) | =
45 1 if (iaZexo()) -
46 i if {anlbject instanceof IMoney)
L return | (IMoney) anbbject).isZero():
48 i if (anlbject instanceof Money) {
q3 | Money aMoney = {Money) anObiject:
50 i return alloney.cucrency().equals{cucrency()}
51 46 amount() == sMoney.amount():
52 | }
I & 53 [: return false;
Methods: 14 /74 1007 m— L }
Statements 23/25 Rrmm—— . |
:':'T'dm" vl 8 g‘§= 56 &[0 public int hashCodei) {
—_— 57 return [Currency.hashCode() + Ifadunt:
e 58 5}
Lines of Code: 51 Classes: - 54 i
NC Lires of Code: Files: - -)) |
Mebods 14 Packeges | | T 17| |
H 6:TODO |
| e | | insen | ImpodPopupON CiSMetyov W

Clover IDEA plugin

4.4.2. Installing

If you have downloaded the Clover IDEA Plugin package from http://www.cenqua.com/, you
can install the plugin manually asfollows:

Page 64

Clover 1.3.13 User Manual

1. shutdown any running instances of IDEA
2. remove any previous versions of the the clover plugin jar from

| DEA_HOWVE/ confi g/ pl ugi ns OR | DEA_HOME/ pl ugi ns.
3. copy CLOVER_HOVE/ | i b/ cl over -i dea4. j ar intothe

| DEA_HOWVE/ confi g/ pl ugi ns directory, and restart IDEA.

Alternatively, if you have downloaded the plugin via the "File | Settings | IDE | Plugins'
interface, the plugin will be available after arestart.

The plugin instalation directory has changed. For IDEA 4.0x it was IDEA_HOME/plugins. For 4.5.x it is now
IDEA_HOME/config/plugins.

Y ou will need alicense to activate your plugin.

» Download your clover.license file from http://www.cenqua.com/licenses.jspa. Evaluation
licenses are available free of charge.

» Placethe clover.license file next to the clover-idead.jar file in either the
| DEA HOVE/ confi g/ pl ugi ns or | DEA_HOME/ pl ugi ns directory.

4.4.3. Uninstalling

To uninstall the Clover IDEA Plugin:

1. shutdown any running instances of IDEA
2. deletethe clover-idead.jar file from itsinstallation directory, either

| DEA HOVE/ confi g/ pl ugi ns OR | DEA HOME/ pl ugi ns.
3. restart IDEA
Alternatively, you can uninstall the Clover IDEA Plugin via the "File | Settings | IDE |
Plugins' interface. Just select the Clover IDEA Plugin from the list and click ‘Uninstall
Plugin'. The uninstall will take affect after you restart IDEA.

4.4.4. Configuring your project

Add the clover jar to your 'project’ classpath.

» Open the project properties "File | Settings | Project ".

* Inthe"Paths' section, select the "Libraries (Classpath)" tab. Remove any old clover jars
and add areferencetocl over - i dea4. j ar you must reference the
cl over-idea4.j ar that youinstaledin| DEA_HOVE/ confi g/ pl ugi ns).

4.4.5. Getting Started
This getting started guide will take you through the steps required to generate Clover

Page 65

Clover 1.3.13 User Manual

coverage for your project.

1. Ensurethat you have added the clover plugin jar to your project library path.

2. Enable Clover, by selecting the 'Enable Clover' check box in the "File | Settings | Project |
Clover" interface.

Turn on clover instrumentation by selecting the toolbar item

Rebuild your project using any of the build mechanisms provided by IDEA.

Run your project by running the unit tests or some other means.

Refresh the latest coverage data by clicking the toolbar item.

View the project coverage data by selecting the toolbar item.

NOo Ok w

4.4.6. Viewing Cover age Results

Clover will record the code coverage information each time you run your application or a
unit-test. This coverage information is available for viewing using IDEA.

The coverage information can be browsed using the Clover Tool Window. This presents the
data in a similar way to the existing Clover GUI Viewer. The upper portion of the Tool
Window contains a class browser with inline coverage information:

Clover =~ @@ =]
.- KaEIE:

J|| Project [87.5%)
- huborial (87.8%)
L Moy [-]
C Monep [B9.4%)
G MaorepBag [87.2%)

lﬁl 1: Project

7 Struchuee

Ex3

Clover class browser
Thetool bar at the top of the browser contains the following buttons:
« Flatten Packages. With this selected, only concrete packages are shown in the browser.
» Autoscroll to Source. With this selected, asingle click on aclassin the browser will
load the corresponding source file in an editor pane, with coverage info overlaid.
» Autoscroll from Source. With this selected, the coverage browser will track the
currently active source file in the editor pane.

Page 66

Clover 1.3.13 User Manual

« Show Coverage Summary. With this selected, the Coverage metrics (see below) will be
visible.
« Set Context Filter. Launches adialog to set the context filter:

Set Context Filters m

~Black Contexts

Select the block contexts to ignore in coverage calculations

[] @deprecated | | asszert [] catch [] construckar
[] da [] ele [] firally [] far

[if [] instance [] method [] static

[] switch [] sunc [] try [] while

~-Regexp Contexts

Select the regexp contexts to ighore in coverage calculations

[] public [] protected [] private

LApply Reset Cancel

Context Filter Dialog
« Generate Clover Report. Launches the report generation wizard that will take you
through the steps required to generate a Pdf, Html or XML report.
« Refresh. Reloads coverage data.
« Deélete. Delete the current coverage database.

The lower portion of the Tool Window contains various Metrics for the currently selected
node in the browser:

Page 67

Clover 1.3.13 User Manual

Coverage

Methods: 14 /14 100% s
Statements: 23 425 92% s
Condtionals: 578 B2.5% s

TOTAL: 23 4% .
Metncs

Linez of Code: 74 Clazzes: -
MC Lines of Code; 5B Files: -

Methodz 14 FPackages: -

Coverage info view

In addition, the plugin can annotate the Java code with the coverage information. This can be
turned on by pressing the Show Coverage toolbar button.

a7 if (sum.isZerof))

45 return:

49 Monies.addElenent (sum) ;

500 O }

51 E‘TEI public hoolean equals(0Object anlbject) {

52 if [(isZerol)])

53 if [anObject instanceof IMoney)

54 return [[(IMoney)anObject).isZerol):

85 [Line 54: statement not executed. |
5a if [an0bject instanceof MonevBag) {

57 HoneyBag aloneyBag= (MoneyBag)anObject;

58 if [aMonevyBag. fMonies.size() '= fMomies.size())

59 return fal=e;

(=]

8 for (Enumeration e= Monies.elements(); e.hasMoreElementsi); 1 {
62 Money m= (Money) e.nextElement():

editor pane with overlaid coverage information

If you do not have "Auto Coverage Refresh” enabled, you will need to press the Refresh Button in the Main Toolbar or the
Clover Tool Window to see the updated coverage information.

I1f a source file has changed since a Clover build, then awarning will be displayed alerting you to fact that the inline coverage
information may not be accurate. The coverage hilighting will be yellow, rather than the red shown above.

4.4.7. Configuration Options

Compilation Options

Page 68

Clover 1.3.13 User Manual

Configuration options for Clover are accessible on the Clover panel of the Project Properties
dialog. Thefirst Tab on this panel provides compilation options:

| w [;Dmpu.;tinnl B View || 7 Filers ‘

~IritString ~|nztrumentation
The Initstring zpecifies the name of the Fine tune which source files you want instrumented by Clover. Specify Ant style
coverage databasze file. Select \Butomatic' to patternzets to include or exclude particular source files [comma or space
hawe Clover manage this location for you, zeparated).
® Automatic Includes: | |
1 User specified: Excludes: | |
| | | [_] Instrument Test Source Folders

[relative to project directarn.

~Flush Palicy

The Flugh Palicy contralz how Clover writes
coverage data to digk at runtime.

% Directed

0 Interyal Fluzh intersal

0 Thieaded | 5000 MIecs

| 0k ” Cancel H Apply

Compilation Configuration Screen
Initstring

This section controls where the Clover coverage database will be stored. Select 'Automatic'
to have Clover manage this location for you (relative to your project directory). Select 'User

Page 69

Clover 1.3.13 User Manual

Specified' to nominate the path to the Clover coverage database. Thisis useful if you want to
use the plugin in conjunction with an Ant build that already sets the location of the Clover
coverage database.

Flush Palicy
The Flush Policy controls how Clover writes coverage data to disk at runtime. See Flush
Policies.

I nstrumentation

Allows you to specify a comma separated list of set of Ant Patternsets that describe which
filesto include and exclude in instrumentation. These options are the same as those described
in the <clover-setup> task.

Viewer options

The second Tab on the configuration panel provides viewing options;

Page 70

Clover 1.3.13 User Manual

Clover E x|
| Eﬂ Compilation ” A View | % Filters ‘
~Refresh Policy ~General
The Refrezsh Palicy contru:nl_s b frequently (¥l Show gutter marks
Clover laaks tor a change in coverage data.
[¥] Show shartcut marks
® Manual [] Show toaltips
0 Autematic. Fefresh every | 2000 MEECE | Sl sty (et Gealloes
[w] Show source highlights
~Source Highlighting
The zource highlighting configurations allow pou to customize the colour of source highlights and gutter marks.
Errar stripe colour [] Out-of-date stripe colour Convered stripe colour
|:| Errar highlight colaur |:| Out-af-date highlight calour |:| Covered highlight colour
| (1] I ‘ Cancel ‘ | Apply

Viewer Configuration Screen

Refresh Policy

The Refresh Policy controls how the Clover Plugin monitors the Coverage Database for new
data. "Manual" is the default and means that you have to click button to refresh the coverage
data. "Automatic® means that the Clover Plugin will periodically check for new coverage
datafor you.

Page 71

Clover 1.3.13 User Manual

General

Allows you to customize where coverage data is displayed within the IntelliJ IDE. Gutter
marks appear in the left hand gutter of the Java Source Editor. Source highlights appear
directly over your source code. Shortcut marks appear in the right hand gutter and allow you
to navigate directly to uncovered regions of code.

Sour ce Highlighting

Allows you to fine tune the colours used Clover in its coverage reporting. The 'xxx highlight
colour' is used for Source Highlights and the 'xxx stripe colour' is used for Gutter and
Shortcut marks.

Filter Options
The third Tab on the configuration panel provides filter options;

Page 72

Clover 1.3.13 User Manual

Clover x|

[v] Enable Clover

| wcompilation u &ﬁ"u’iew || ?Filters|

~FRegexp Filker

H & Name:|private |

'l pri
Ln_: private Type: | Method - |
i
- I:erh.BClEd ' Regesp: ¥ 1?private . |
5! public S U :

. A
% yoid [_] Enable this filter.

.3
~Block Filkers

Select the block conteats to ignore in coverage calculations.

[[] Edeprecated [C] assert [] catch [] constructor
[] do [] else [finally [far
[[instance [method [] static
[switch [svre [try [while
| (1] I ‘ Cancel ‘ | Apply

Filter Configuration Screen
Regexp Filters

The regexp filters alow you to define custom contexts to ignore when viewing coverage
information.

Working with regexp filters.
« Use, orto Create, Delete or Copy respectively the selected filter.

Page 73

Clover 1.3.13 User Manual

« All new and edited regexp filters will be shown in 'blu€, indicating that they are currently
unavailable.

» To make anew/edited filter available, you need to delete the existing coverage database
using the button and rebuild your project/module.

See Coverage Contexts for more information.

Block Filters

Allows you to specify contexts to ignore when viewing coverage information. For example,
selecting the if context will remove if body (not the conditional) from the coverage reports.

4.4.8. Example: Creating aregexp context filter

For the sake of this example, let us assume that we want to remove al private methods from
the coverage reports. How would we go about this?

Open the configuration panel " Settings | Clover | Filters®.

Select to create a new Regexp Context Filter.

Set thenameto pri vat e.

Since we are creating thisfilter to filter private ‘methods, specify the Met hod type.

We now need to define regular expression that will match al private method signatures.
That is, aregexp that will match any method with the pr i vat e modifier. An example of
sucharegexpis(.*) ?private .*.Enterthisregexp intheregexp field.

« You will notice that the name of this new filter appearsin blue. Blueis used to indicate
that the filter is either new or recently edited and therefore 'unavailable'. To make this
new filter available, select from the Main Toolbar and recompile your project. Once
active, you will noticethe pr i vat e filter appear in the Context Filter Dialog. Y ou will
now be able to filter private methods out of your Clover coverage calulations and reports.

4.4.9. FAQ
Q: I'verun my tests, but coverage information does not show in IDEA

A: If you do not have "Auto Coverage Refresh™ enabled, you will need to press the Refresh
Button in the Clover Tool Window.

Q: When | compile with Clover instrumentation enabled, | get the following error:
Error: line (31) package com_cenqua_clover does not exist

A: You need to add the clover-idead.jar file ‘each’ of your modules classpaths.

Page 74

Clover 1.3.13 User Manual

Q: | havethe Clover plugin enabled, but my files are not being instrumented.

A: As of v0.9.1, there is a toggle button on the main IDEA Toolbar for enabling and
disabling instrumentation. Y ou will need to ensure that this toggle button is enabled .

Q: When I compile my program I get the stack trace
java.lang.lllegal ArgumentException: Prefix string too short. Whats going on?

A:Thereis an known issue within IDEA that istriggered by the Clover integration. Thisissue
relates to the size of the project name. If its less then 3 characters, then you see the exception
that you are seeing. The only known 'workaround' for this issue is increasing the length of
your project name.

Q: I have an enabled Regexp Filter that does not seem to befiltering.

A: Have you checked your regexp? It may be that your regexp is not matching the
methods/statements that you expect. See Coverage Contexts for more information about
Regexp Contexts.

A: Try reseting the current context filter and then re-enabling them. There is a known
scenario where regexp filters are not being applied to the coverage data when they are
enabled at activation time.

4.5. Clover IDEAS/6 Plugin User Guide

Plugin versions: 5-1.0.7, 6-1.0

System Requirements: IntelliJ IDEA 5.x, 6.X

45.1. Overview

The Clover IDEA Plugin allows you to instrument your Java code easily from within the
IntelliJ IDEA Java |DE, and then view your coverage resultsinside IDEA.

Page 75

Clover 1.3.13 User Manual

3 tutonial screensholsipr - [E:-\screenshols\lutosial] - [tutorial sereenshots] - E:\scieenzhots\tutanal\srcbmainbutorial\Money. java - Intellal 1.
Edit Search View GoTo Code Analyze Refactor Build Run Tool 'Window Help

EH2]SG X RE|P A S| R MoaTea v b B |0

E]

i |g

Cloves

: public IMoney addMoneyBag(MoneyBag =) {
33 | return =, addMoneyithis) ;

1) IMoney (-]

© [ianey 4] .

) MoneyBag (87.2%) 25 [(public int amount() {

return [Amount @

® O)

| g e gy | [1epurusnoy T 5 |

40 |0 public Strimg currency() |
i return fCurrency;

O [67 o) (O 1 o)
9

| Line 40: methed entered 415 times, |

4z 0)
43 |
44 @t B public boolean equals|0bject anlbject] | =
as | if (isZexo()) W
46 it if [anlbject instanceof IMoney)
47 | return | (IMoney) anObject).isEerol(]:
48 i if (anlbject instanceof Money) {
49 1 Money aMoney = (Money) andbject:
£0 | return aloney. currency().equals{currency())
51 ; 46 amountc(] == aMoney.amount():
52 | }

Coverage 53 [: return false:

Methods: 14 /14 1007% m— L }

5%23325 325 I—— 55 i

E“ﬁ,m 8 §§= 56 &[0 public int hashCodei) {

—————— —————— |gq | return [Currency.hashCode(] + finount:

MEncs: 58 C, }

Lings of Code: 91 Clsgzes - |oq
NC Lines of Code: &0 Files: - o)) =
Methads: 14 Packages: - | r%‘ =

i 6:TODO |

I | Inset | Impot Popus ON iEMGiroM
Clover IDEA plugin

45.2. Installing

If you have downloaded the Clover IDEA Plugin package from http://www.cenqua.com/, you
can install the plugin manually asfollows:

1. shutdown any running instances of IDEA
2. remove any previous versions of the the clover plugin jar from

| DEA_HOVE/ confi g/ pl ugi ns OR | DEA_HOWVE/ pl ugi ns.
3. copy CLOVER _HOVE/ | i b/ cl over -i dea5. j ar intothe

| DEA HOVE/ conf i g/ pl ugi ns directory, and restart IDEA.

Alternatively, if you have downloaded the plugin via the "File | Settings | IDE | Plugins'
interface, the plugin will be available after arestart.

Page 76

Clover 1.3.13 User Manual

Y ou will need alicense to activate your plugin.

« Download your clover.license file from http://www.cengqua.com/licenses.jspa. Evaluation
licenses are available free of charge.

« Placethe clover.license file next to the clover-ideab.jar filein either the
| DEA_HOVE/ confi g/ pl ugi ns or | DEA_HOVE/ pl ugi ns directory.

4.5.3. Uninstalling

To uninstall the Clover IDEA Plugin:

1. shutdown any running instances of IDEA

2. deletethe clover-ideab.jar file fromitsinstallation directory, either
| DEA_HOVE/ confi g/ pl ugi ns OR | DEA HOVE/ pl ugi ns.

3. restart IDEA

Alternatively, you can uninstall the Clover IDEA Plugin via the "File | Settings | IDE |
Plugins' interface. Just select the Clover IDEA Plugin from the list and click 'Uninstall
Plugin'. The uninstall will take affect after you restart IDEA.

4.5.4. Configuring your project

Add the clover jar to your 'project’ classpath.

» Open the project properties "File | Settings | Project ".

e Inthe"Paths' section, select the "Libraries (Classpath)” tab. Remove any old clover jars
and add areferencetocl over -i deab. | ar you must reference the
cl over-ideab5. | ar that youinstaledin| DEA HOVE/ confi g/ pl ugi ns).

45.5. Getting Started

This getting started guide will take you through the steps required to generate Clover
coverage for your project.

1. Ensurethat you have added the clover plugin jar to your project library path.
2. Enable Clover, by selecting the 'Enable Clover' check box in the "File | Settings | Project |
Clover" interface.

3. Turn on clover instrumentation by selecting the toolbar item

4. Rebuild your project using any of the build mechanisms provided by IDEA.

5. Run your project by running the unit tests or some other means.
6. Refreshthe latest coverage data by clicking the toolbar item.
7. View the project coverage data by selecting the toolbar item.
4

.5.6. Viewing Cover age Results

Page 77

Clover 1.3.13 User Manual

Clover will record the code coverage information each time you run your application or a
unit-test. This coverage information is available for viewing using IDEA.

The coverage information can be browsed using the Clover Tool Window. This presents the
data in a similar way to the existing Clover GUI Viewer. The upper portion of the Tool
Window contains a class browser with inline coverage information:

Claver CIETEES

& -

U - E - RAEIEEE
=1 [Project 87.8%)

0|5 iz torial (87.8%)

= L Moy [-]

r G MaorepBag [87.2%)

o

Ex]

Clover class browser

Thetool bar at the top of the browser contains the following buttons:

Flatten Packages. With this selected, only concrete packages are shown in the browser.
Autoscroll to Sour ce. With this selected, asingle click on a class in the browser will
load the corresponding source file in an editor pane, with coverage info overlaid.
Autoscroll from Sour ce. With this selected, the coverage browser will track the
currently active source file in the editor pane.

Show Coverage Summary. With this selected, the Coverage metrics (see below) will be
visible.

Set Context Filter. Launches adialog to set the context filter:

Page 78

Clover 1.3.13 User Manual

Set Context Filters E

~Block Contexts

Select the block contesxts o ignore in coverage calculations

[] @deprecated [| azszert [] catch [] construckar
[] da [] ele [] firally [] far

[]if [] instance [] method [] static

[] switch [] sunc [try [] while

~-Regexp Contets

Select the regexp contexts to ighore in coverage calculations

[] public [] protected [] private

LApply Reset Cancel

Context Filter Dialog
« Generate Clover Report. Launches the report generation wizard that will take you
through the steps required to generate a Pdf, Html or XML report.
« Refresh. Reloads coverage data.
« Deélete. Delete the current coverage database.

The lower portion of the Tool Window contains various Metrics for the currently selected
node in the browser:

Page 79

Clover 1.3.13 User Manual

Coverage

Methods: 14 /14 100% s
Statements: 23 425 92% s
Condtionals: 578 B2.5% s

TOTAL: 23 4% .
Metncs

Linez of Code: 74 Clazzes: -
MC Lines of Code; 5B Files: -

Methodz 14 FPackages: -

Coverage info view

In addition, the plugin can annotate the Java code with the coverage information. This can be
turned on by pressing the Show Coverage toolbar button.

a7 if (sum.isZerof))

45 return:

49 Monies.addElenent (sum) ;

500 O }

51 E‘TEI public hoolean equals(0Object anlbject) {

52 if [(isZerol)])

53 if [anObject instanceof IMoney)

54 return [[(IMoney)anObject).isZerol):

85 [Line 54: statement not executed. |
5a if [an0bject instanceof MonevBag) {

57 HoneyBag aloneyBag= (MoneyBag)anObject;

58 if [aMonevyBag. fMonies.size() '= fMomies.size())

59 return fal=e;

(=]

8 for (Enumeration e= Monies.elements(); e.hasMoreElementsi); 1 {
62 Money m= (Money) e.nextElement():

editor pane with overlaid coverage information

If you do not have "Auto Coverage Refresh” enabled, you will need to press the Refresh Button in the Main Toolbar or the
Clover Tool Window to see the updated coverage information.

I1f a source file has changed since a Clover build, then awarning will be displayed alerting you to fact that the inline coverage
information may not be accurate. The coverage hilighting will be yellow, rather than the red shown above.

4.5.7. Configuration Options

Compilation Options

Page 80

Clover 1.3.13 User Manual

Configuration options for Clover are accessible on the Clover panel of the Project Properties
dialog. Thefirst Tab on this panel provides compilation options:

| w [;Dmpu.;tinnl B View || 7 Filers ‘

~IritString ~|nztrumentation
The Initstring zpecifies the name of the Fine tune which source files you want instrumented by Clover. Specify Ant style
coverage databasze file. Select \Butomatic' to patternzets to include or exclude particular source files [comma or space
hawe Clover manage this location for you, zeparated).
® Automatic Includes: | |
1 User specified: Excludes: | |
| | | [_] Instrument Test Source Folders

[relative to project directarn.

~Flush Palicy

The Flugh Palicy contralz how Clover writes
coverage data to digk at runtime.

% Directed

0 Interyal Fluzh intersal

0 Thieaded | 5000 MIecs

| 0k ” Cancel H Apply

Compilation Configuration Screen
Initstring

This section controls where the Clover coverage database will be stored. Select 'Automatic'
to have Clover manage this location for you (relative to your project directory). Select 'User

Page 81

Clover 1.3.13 User Manual

Specified' to nominate the path to the Clover coverage database. Thisis useful if you want to
use the plugin in conjunction with an Ant build that already sets the location of the Clover
coverage database.

Flush Palicy
The Flush Policy controls how Clover writes coverage data to disk at runtime. See Flush
Policies.

I nstrumentation

Allows you to specify a comma separated list of set of Ant Patternsets that describe which
filesto include and exclude in instrumentation. These options are the same as those described
in the <clover-setup> task.

Viewer options

The second Tab on the configuration panel provides viewing options;

Page 82

Clover 1.3.13 User Manual

Clover E x|
| Eﬂ Compilation ” A View | % Filters ‘
~Refresh Policy ~General
The Refrezsh Palicy contru:nl_s b frequently (¥l Show gutter marks
Clover laaks tor a change in coverage data.
[¥] Show shartcut marks
® Manual [] Show toaltips
0 Autematic. Fefresh every | 2000 MEECE | Sl sty (et Gealloes
[w] Show source highlights
~Source Highlighting
The zource highlighting configurations allow pou to customize the colour of source highlights and gutter marks.
Errar stripe colour [] Out-of-date stripe colour Convered stripe colour
|:| Errar highlight colaur |:| Out-af-date highlight calour |:| Covered highlight colour
| (1] I ‘ Cancel ‘ | Apply

Viewer Configuration Screen

Refresh Policy

The Refresh Policy controls how the Clover Plugin monitors the Coverage Database for new
data. "Manual" is the default and means that you have to click button to refresh the coverage
data. "Automatic® means that the Clover Plugin will periodically check for new coverage
datafor you.

Page 83

Clover 1.3.13 User Manual

General

Allows you to customize where coverage data is displayed within the IntelliJ IDE. Gutter
marks appear in the left hand gutter of the Java Source Editor. Source highlights appear
directly over your source code. Shortcut marks appear in the right hand gutter and allow you
to navigate directly to uncovered regions of code.

Sour ce Highlighting

Allows you to fine tune the colours used Clover in its coverage reporting. The 'xxx highlight
colour' is used for Source Highlights and the 'xxx stripe colour' is used for Gutter and
Shortcut marks.

Filter Options
The third Tab on the configuration panel provides filter options;

Page 84

Clover 1.3.13 User Manual

Clover x|

[v] Enable Clover

| wcompilation u &ﬁ"u’iew || ?Filters|

~FRegexp Filker

H & Name:|private |

'l pri
Ln_: private Type: | Method - |
i
- I:erh.BClEd ' Regesp: ¥ 1?private . |
5! public S U :

. A
% yoid [_] Enable this filter.

.3
~Block Filkers

Select the block conteats to ignore in coverage calculations.

[[] Edeprecated [C] assert [] catch [] constructor
[] do [] else [finally [far
[[instance [method [] static
[switch [svre [try [while
| (1] I ‘ Cancel ‘ | Apply

Filter Configuration Screen
Regexp Filters

The regexp filters alow you to define custom contexts to ignore when viewing coverage
information.

Working with regexp filters.
« Use, orto Create, Delete or Copy respectively the selected filter.

Page 85

Clover 1.3.13 User Manual

« All new and edited regexp filters will be shown in 'blu€, indicating that they are currently
unavailable.

» To make anew/edited filter available, you need to delete the existing coverage database
using the button and rebuild your project/module.

See Coverage Contexts for more information.

Block Filters

Allows you to specify contexts to ignore when viewing coverage information. For example,
selecting the if context will remove if body (not the conditional) from the coverage reports.

4.5.8. Example: Creating aregexp context filter

For the sake of this example, let us assume that we want to remove al private methods from
the coverage reports. How would we go about this?

Open the configuration panel " Settings | Clover | Filters®.

Select to create a new Regexp Context Filter.

Set thenameto pri vat e.

Since we are creating thisfilter to filter private ‘methods, specify the Met hod type.

We now need to define regular expression that will match al private method signatures.
That is, aregexp that will match any method with the pr i vat e modifier. An example of
sucharegexpis(.*) ?private .*.Enterthisregexp intheregexp field.

« You will notice that the name of this new filter appearsin blue. Blueis used to indicate
that the filter is either new or recently edited and therefore 'unavailable'. To make this
new filter available, select from the Main Toolbar and recompile your project. Once
active, you will noticethe pr i vat e filter appear in the Context Filter Dialog. Y ou will
now be able to filter private methods out of your Clover coverage calulations and reports.

45.9. FAQ
Q: I'verun my tests, but coverage information does not show in IDEA

A: If you do not have "Auto Coverage Refresh™ enabled, you will need to press the Refresh
Button in the Clover Tool Window.

Q: When | compile with Clover instrumentation enabled, | get the following error:
Error: line (31) package com_cenqua_clover does not exist

A: You need to add the clover-ideab.jar file ‘each’ of your modules classpaths.

Page 86

Clover 1.3.13 User Manual

Q: | have an enabled Regexp Filter that does not seem to befiltering.

A: Have you checked your regexp? It may be that your regexp is not matching the
methods/statements that you expect. See Coverage Contexts for more information about
Regexp Contexts.

A: Try reseting the current context filter and then re-enabling them. There is a known
scenario where regexp filters are not being applied to the coverage data when they are
enabled at activation time.

4.6. Clover Netbeans M odule
Plugin Version 0.5.1.02

The Clover Netbeans Module is currently abeta ver sion. The module has been tested against Netbeans 3.5

4.6.1. Overview

The Clover Netbeans Module allows you to instrument your Java code easliy from within the
Netbeans Java IDE, and immediately view your coverage results within the IDE.

Page 87

http://www.netbeans.org/

Clover 1.3.13 User Manual

B3 HetBeans IDE 3.5 - Sowce Editos [MoreyBag]

e ER ew Prowst Pukd Petug Vecsoning Tools Windew Hep
RaBes Xeonmde AP Bt rehul | [HO @ e—
sy [Estng | Degura |
[l Expltwar [Clowar Coveraga] Hll & cquis | QP Rao S O 0B f@oa T
B @ | FETUrNy
-]
" Project 75 6%) fHonies. resoveEloment [old) ¢
P 3 detoull-phg (02 1%] IHoney sum= old.add [aMonsy) :
B money[-) il [sus.isfero())

=0 money [-]
¢ B moneypoan)
B Morey [BIA%)
B moreyBagna%)
B MoreyBag [T04%)
® B moneyTeut [100%)
B MoreyTest [100°%]
L=

EBLwEEn ;
fHonted . addElement | Jus)
]

public boolean equals [fbject anlbject) |
if (isZero())
if [anfbject instanceof IMoney)
retwrn [(IMoney)anobject).isZera();

if [amlbject instanceol Mnihw
BoneyBag aloneyBags (HoneyBag)andbjece:
Af (aMoneyBag, fMonies.size () != fHonies.size())
rokurn false:

for (Enuseration e= fHomies.olomonis(): e.hasHoreElemontai):)
Money B (Momey) & meXtElement ()
if [faMoneyBag. containen))

Shsbermerds 40770 70 I — |

FEburn falae;
¥
return true;
}
return false;

¥

Liess of Code. 134 Clssses -
NC Lines of Code: 13 Flles: LT =
Mithods: 1T Packnges: £ x
") : Emmmm.m =
- IE) | Time: 0.047
¥ e |
m —=i| oK (14 tests)
by =il commsnt prasents E‘ u
pubic -
e . I=lf a0 Tx
| e | v Crssdnebea) ¥ Compta ¥ voneytest-vo - |

Clover Netbeans Plugin

4.6.2. Installing the Module

Install the Clover Netbeans Module using the Update Center.

« Open the Update Center Wizard by selecting "Tools | Update Center".
» Select the"Install manually" option and follow the onscreen instructions (The Clover
Netbeans Module is located in the lib/clover-netbeans.nbm file).

4.6.3. Configuring the Module

Add clover-netbeans.jar to your project classpath by mounting the clover-netbeans.jar.
« Open the mount filesystem wizard "File | Mount Filesystem".

Page 88

Clover 1.3.13 User Manual

o Select "Archive Files' and "Next"
Select the clover.jar located in either the modules subdirectory of your user directory, OR

if the moduleisinstalled as 'global’, then the modules subdirectory of the NB Installation
directory

(The clover-netbeans.jar needs to be in the classpath because it is needed at runtime when
you are running your unit tests. It is also needed when you are compiling with Clover)

4.6.4. Using the Module

Clover instruments your code by pre-processing your Java files prior to compilation. This
means that you will need to select "Clover Instrumentation” as your Default Compiler for
Java Sources. Y ou can do this by the following steps.

o Select the "Build with Clover" toggle button

E:{;.‘:J
Compile with clover button
in the Clover Toolbar
Alternatively, the following option is equivalent.

* You can modify the Default Compiler through the "Tools | Options" interface. Select
"Options | Editing | Java Sources' and select "Clover Instrumentation” as the Default
Compiler property.

Now, whenever you Compile or Build your source, it will be instrumented by Clover. This
includes the "Project | Build Project” menu item, and the build/compile options available
through the context sensitive right-click popup menus.

Build Options
Eﬂ.lﬂj

Build with clover button
Rebuild Coverage

This option alows you to delete existing coverage data, and rebuild the project using the
latest configuration and available source. Use this when the coverage database has become
‘out-of-sync' with the project as a result of java sources being deleted, or excludes
configurations changing.

4.6.5. Viewing Cover age Results

Once you are instrumenting your code, Clover will gather code coverage information

Page 89

Clover 1.3.13 User Manual

whenever you execute your code. This information can be viewed in the form of a clover
coverage browser and annotations of your sourcefile.

Coverage Browser

The top pane of the Clover Coverage Tab contains a class browser with inline coverage
information:

B
" Project [82.1%]
@ 3 defaut-pkg [35.6%)
o IMarey [-]
=2 Inaoney [-]
o Money [59.4%]
o Money [39.4%)
. MoneyEag [50.5%]
fir MoneyBag [80.5%]
o MaoneyTest [100%)]
o MoneyTest [100%]
@ O example [0%]

Clover class browser

The tool bar at the top of this browser contains the following options:

: “E
tool bar icon
Flatten Packages. With this selected, only concrete packages are shown in the browser.
[] m
tool bar icon

Refresh. Reloads coverage data. This button is disabled when "Auto Refresh” is active.

The bottom pane of the Clover Coverage Tab contains Coverage and other Metrics
information for the currently selected node in the browser.

Page 90

Clover 1.3.13 User Manual

—Coverage

Methods: 15717 85 2% "
Staterments: 56 /70 50% EEET —_"m
Conditionals: 30 738 75.9% I —_—_—

TOTAL: g0 5% I "
—hletrics

Line= af Code; 134 Classes: -

MC Lines of Code: 113 Files: =

hethods: 17 Packages: -

Coverageinfo view

I nline sour ce annotation

In addition, the plugin can annotate the Java source with the coverage information in the
editor pane. This is available whenever the open source file has associated coverage data.
The annotations are controlled via a toolbar in the editor pane

editor tool bar
. These toolbar buttons allow you to:

. =

editor tool bar icon

Move to the previous uncovered line

° =,
=

editor tool bar icon
Toggle display of annotations
. -+

editor tool bar icon
Move to the next uncovered line

Page 91

Clover 1.3.13 User Manual

public boolean eguals (0bject anObject) |
if [(i=Fero(])
if (anlbject instanceof IMoney)
return [[IMoney)anlbhject).isZero() ;

if [anObject instanceof HDnE|Line 28 statement executed 3 times. |

MonevyBag aMonevBag= (MoneyBag)anlhject;
if (aMoneyBag.fMoniezs.size(] != fMoniez.size(])
return false;

for (Enumeration e= fMonies.elements(); c.hasMoreElements(); | |
Money m= (Money) e.nextElement (] :

editor pane with overlaid coverage information

To ensure that the presented coverage information is up-to-date, either tell Clover to refresh
by selecting the "Refresh” button in the Clover Coverage Tab OR configure clover to

periodically check for updated coverage information for you.

When the coverage information becomes out of date, the inline source annotations change to

yellow.

public boolean equals (0Object ﬂrjﬂh"lPPH !
if [isZero(]) Line 55: statemert not executed. |

if [anfObject instanceof IMoney)
return [[(IMoney)anObject).isZero()

if [anObject instanceof MoneyEag) |
MoneyBayg aMonevBag= (MoneyBag)anObiject;
if [(aMoneyBag.fMonies.size() '= flonies.size())
return false:;

for (Enumeration e= fMonies.element=(); e.hasMoreElementsi): | |
Morey n= (Money) e.nextElement():

editor pane with overlaid coverage information

4.6.6. Configuration

Y ou will find Clover Configuration Options within the Netbeans Options Viewer.

« "Building | Compiler Types| Clover Instrumentation”
» "IDE Configuration | Server And External Tool Settings | Clover Settings'

Clover Instrumentation

Initstring

Page 92

Clover 1.3.13 User Manual

This section controls where the Clover coverage database will be stored. If left blank, Clover
will manage this location for you (relative to your project directory). Otherwise, you may
nominate the path to the Clover coverage database. This is useful if you want to use the
plugin in conjunction with an Ant build that already sets the location of the Clover coverage
database.

Flush Policy
The Flush Policy controls how Clover writes coverage data to disk at runtime. See Flush
Policies.
View Settings

Auto Refresh

The Auto Refresh control allows you to enable/disable Clovers automatic coverage update
monitoring. When set to true, Clover will automatically refresh coverage data. The refresh
interval can be managed viathe "Refresh interval” setting.

Refresh interval
The Refresh interval value, specifies, in milliseconds, the time interval Clover will use when
automatically checking for coverage updates. See also Auto Refresh.

Show Summary

The Show Summary control alows you to show/hide the Coverage Summary bar in the
Clover Toolbar. This summary bar provides you a graphical indication of your coverage for
the entire project.

4.6.7. FAQ

Q: lverun my tests, but coverage information isnot being displayed in the I DE:

A:You will need to either select "Auto Refresh” to true, or select reload

&

reload icon
Q: | only see coverage data for thelast test case | executed.:

A: Clover will display the coverage information gathered from your last test run. This means,

Page 93

Clover 1.3.13 User Manual

that if you run each of your tests individually, then only the coverage from the last test
executed will be shown. Support for aggregating multiple test runs is supported via spans, to
be included in afuture release.

Q: I have an existing Ant build script with clover integration. Can | view the coverage
information within Netbeans:

A: By setting the "InitString" property on "Clover Instrumentation” to an existing coverage
database (one maintained by an Ant build script for example), you can access all of the
viewing features supported by the plugin. Just make sure that you have the source files for
this coverage data mounted. You can then safely make changes to your source within
Netbeans, build and run your tests with Ant, and the view the coverage results with Clover. If
you are going to take this approach, it is best to ensure that the "Build with Clover" toggle
button

£
Compile with Clover
iISNOT selected.
Q: My sourcefileswill not compile:

A:Ensure that you have the clover-netbeans.jar in your project classpath.

4.6.8. Known | ssues

e Use Class Include/Exclude does not work.

» Itisnot expected that future releases will be backward compatible with this release.

e A problem exists with "Auto Refresh” where it will not refresh coverage data after an
IDE restart. The coverage information will need to change before the coverage data will
be updated.

4.7. JBuilder Plugin Guide

Plugin version 1.0

System Requirements. JBuilder 9 (Enterprise Edition), JBuilder X (Enterprise Edition),
JBuilder 2005 (Enterprise Edition)

4.7.1. Overview

The Clover JBuilder Plugin allows you access the functionality of Clover from within your
IDE. Clover will instrument your java source and show you your test coverage, highlighting
areas of code that have not been executed.

Page 94

Clover 1.3.13 User Manual

l'-_" JBuilder X - E;/chvverd/stc/ main/Money. java

Fle Edt Sesch Refactor Wew Froject Bun Team Wizards Took Window Help Purchase

D-EE-DES-&2-8) - b < o -G8 i b -] B -

[Project [1% Money
W EE D GO wodp: =i IEe -]
T tutorial. o | ¥ hdds & money o this momey. Forwards the request to the addMonsy helper.
= @ <Progsct Source> i ol
&Im?.j-uva H public IHoney add(IMoney m) |
B3 Moy, java return u,addMoney (this);
24 MoneyBag.java }
24 MoneyTest java public IMoney addWomsyMoney m) |
B (= <Prajatt Caverages if (m.currency().equalz{curcency{}))
2 i defaut-php (91.2%) return new Monsy (amount()+s, amount(), currency()):
4 Money (-] return MoneyBag. create (bhis, u):
gmt&?—m‘l '
MoreyBag (87.2%)
£3, MareyTast (97,79%) public IMoney sdd¥omeyBag{MoneyBag s) |

return =, addfoney (thi=) :
+
public int amount(] |
return fAmount;
4
public Sering currency() [
return £Curcency:
}
public boolean squsls(0bject anlbject) |
if (i=Zero())
if fandbject instanceof IMoney)
return | ([IHoney)anObject).isZeco():
if [anObject instanceof Money] |
Honey aMoney= (Honey)anObject:
return aloney.currency().equalscurrency ()]
&6 amount(} == aMoney.amount():

- —'t':_'l'-—f:-—f

return false;

public int haskCode{) |
retwrn £Curcency.hashCode [)+EAmnount;

B I 22 in total, 22 succesded in 0:0.343

| el Gover 7 X8k | x| Test Configuration | |
| |
The Clover plugin for JBuilder

4.7.2. Installing the JBuilder Plugin

To install the Clover JBuilder Plugin:

1. Locate your JBuilder installation directory. For the rest of this document, this directory
will be referred to as JBUILDER_HOME.

Page 95

Clover 1.3.13 User Manual

2. Download the Clover JBuilder zip file, and extract it into atemporary directory.
3. Copy thelib\clover-jbuilder.jar file into the BUILDER_HOME/lib/ext directory.
4. The next time you start JBuilder, Clover will be available.

Y ou will need alicense to activate your plugin.

« Download your clover.license file from http://www.cengqua.com/licenses.jspa. Evaluation
licenses are available free of charge.

« Placethe clover.license file next to the clover-jbuilder.jar filein the
JBUI LDER_HOVE/ | i b/ ext directory.

4.7.3. Uninstalling the JBuilder Plugin

To uninstall the Clover JBuilder Plugin:

1. Shutdown any running instances of JBuilder.
2. Deletethe clover-jbuilder.jar file from the BUILDER_HOME/lib/ext directory.
3. Restart your JBuilder instance.

4.7.4. Quick Start Guide

This quick start guide will take you through the steps required to generate a clover coverage
report for your project.

1. Enable Clover, by selecting the 'Enable Clover' check box in the ‘Project | Project
Properties | Clover' properties page.

Add the clover plugin jar toyour project library path.

Turn on clover instrumentation by clicking the toolbar item

Rebuild your project using any of the build mechanisms provided by JBuilder.

View the project coverage data by clicking the toolbar item.

Run your application or test cases. Thiswill generate your Coverage data.
Refresh/load your coverage data by clicking the to see which parts of your application
were covered.

NoOokwN

4.7.5. Working with Clover

Your most frequent interaction with Clover will be via the Clover Toolbar (shown below).
All the functions available through the toolbar are also available in the 'Project’ menu.

Page 96

Clover 1.3.13 User Manual

(3 (qlep|-mm B -

ney | |8 O Refresh Now

11ld= fing Feset Coverage v
== null Delete Coverage
ities. addErememrcromorev

toolbar

The Clover toolbar contains the following functions:

« Build with Clover. Toggles the use of the Clover Compiler when JBuilder compiles the
current project.

. Show Cover age. Toggles the display of coverage information in the Source editors.
Refresh coverage button. Coverage data for the current project is reloaded from disk.
Coverage summary bar. Displays the coverage level of the current project.

Reset Coverage. Deletes the recorded coverage data for the current project.

Delete Coverage. Deletes the recorded coverage data AND the coverage database for the
current project.

In addition, the 'Project’ menu contains additional functions:

« Generate Report.... Launches the report generation wizard that will take you through the
steps required to generate a Pdf, Html or XML report.
» Filter Coverage.... Launches adiaog to set the context filter.

4.7.6. Viewing Coverage Results
Java Sour ce Editor

The Clover JBuilder plugin allows you to view the clover coverage data directly within the
Java Source Editor (as seen below).

Page 97

Clover 1.3.13 User Manual

¥ public Sceing cuerency() |
return fCurcency:

}
¥ public boolean =gusls(0bject anlbiect) |
1f (1=fera(])

if (anlbject instanceof IMoney)

return | (IHoney)anlbject).ialeco() :

if [enlbjece instanceof Maonsy] |

Honey aMoneys [Honev)anlbject:

return aMopey. currsnoy (). equals [curresney (1]

6 amount(}) == aMoney.amount():

)

| return false;

Source coverage view
The coverage datais displayed in two ways:

» Asamarker in theleft hand gutter.
« Ashighlights within the Java Source Editor.

By default, coverage data is represented by three colours.

« Red indicates that the line of sourceis not fully covered.

« Green indicates that the line of sourceisfully covered.

« Yellow indicates that the coverage data being displayed is out of date. The source file has
changed since the coverage data was generated, and will need to be re-instrumented.

Project Coverage Tree

The Clover Plugin alows you to view a coverage tree (see below) for the current project.
This coverage treeislocated in the Project Pane, on the left hand side of the IDE.

Page 98

Clover 1.3.13 User Manual

& Project
I%l IE% = B tutorial, jps -
@ tutarial, jpe :
([} |<Project Source: |
(= £+3 <Project Coverage s

=) default-pkg (37.5%)

E:i IMorey (-)
22 Money (39,4%)

®2 MonevBag (57.2%)

Project | File Browser

Project view
Clover Coverage Database File Type support
Clover provides support for viewing arbitrary coverage databases. Just add a coverage
database file to your project and explore the coverage recordings. The default coverage

database file extension is db. This can be modified as necessary via 'Tools | Preferences and
then 'Browser | File types properties page.

5 € Foverage.db
= [default-pkg (0%)
Eﬁ, IMoney (-)
Ei Money {0%a)
Ei MonevBag (0%
Coverage database

Page 99

Clover 1.3.13 User Manual

4.7.7. Configuration Options

The Clover Plugin configuration options are available through the 'Project | Project
Properties menu, or the project node (right click) context menu. Configuration is split into
Compilation configuration and View configuration.

Compilation Options

l'..l; Properties for "tutorial jpx’

==

-Fhush Palicy

The Flush Policy contrals how Clover wriles
coverage data to disk at runtine.

(® Directed
() Inberval
() Threaded |5000

MSECs

Fhush interysl

- Compder

Clover Clover
Paths Enable Clover
=] General v
Find Classes Filter {4 Compilation | oy Yiew | |
Find Closses fher | [[C | ol ew | Fiker |
UML Ciagram Fiber | [InitString rFikering
B gj.?d The Initstring specifies the name of the coverage Fine lune which source files yvou want instrumented by
R Java database file. Select Automatic' to have Clover Clover. Specify Ant style patternsets to include or exclude
o manage this location for you. particular source files (comma or space separated).
Resour Inchudes:
de; (®) Aukomatic : :
ank User specified: Excludes: ™"Tesl java
‘Web Services © |
Menu [hems | TR |
Z::T::w [relative to project directary.
Personality

The delegate compiler specifies the javac compiler used
by clower to compile the java source once it has been
instrumentad,

Delegate Compiler: | Project javac ¥

Language Level

Specify which Java language level you would like
supported by the Clover instrumenter.

|1.5-'m’luymd,uabnmhg,.d:. 'vl

(Cox J[_come J[1o]

Initstring

This section controls where the Clover coverage database will be stored. Select 'Automatic'

Compilation properties

Page 100

Clover 1.3.13 User Manual

to have Clover manage this location for you (relative to your project directory). Select 'User
Specified' to nominate the path to the Clover coverage database. Thisis useful if you want to
use the plugin in conjunction with an Ant build that already sets the location of the Clover
coverage database.

Flush Palicy

The Flush Policy controls how Clover writes coverage data to disk at runtime. "Directed” is
the default and means coverage data is written to disk when the VM exists (or when your
test cases finish). "Interval” allows you to specify that coverage data should be written out at
regular intervals. "Threaded" will actively flush coverage data to disk at regular intervals.
See Flush Policies.

Filtering
If you do not want all of your source instrumented, then you can control which this using
these two Ant pattern sets. For example, you may prevent tests from being instrumented by
using an "Excludes’ value of **/ * Test .] ava as shown.

Compiler
This allows you to select the java compiler used by clover to compile your java source once
it has been instrumented.

Language L evel

Allows you to specify which language features you would like Clover to support. If you use
asserts within your code, you would need to select '1.4' or higher, if you use enums, then you
need to select '1.5'.

View Options

Page 101

Clover 1.3.13 User Manual

Paths

=l General _ ;
Find Classes Filter (£ 3 Compilation | {cy iew l‘ml
Unit Testing Filter
Ll‘ﬂLDhau‘mFiw Rafmsl‘-Poﬂq' - Irfine Wiew
= g":-'d The Refresh Policy controls hiow frequeanthy The inling coverage controls allow vou to customize the
3 Java Clover looks for a change in coverage data. coverage informalion that is displayed directly within the editor
1oL - and associated windows.
Resmrce () Manual
Javadoc (@ Auromatic, Refresh every |2000 Mmsecs [v] Gutker [i¢] Sauree Highlight
ank
\Web Services | Coverage Trae
Menu [tems |
Formatting
Server [Source Highilghting-
Personalit
= Y The source highlighting configurations allow you to customise the colour of source highlights and gutter marks.
W Erroe stripe colour | Ouk-of-date stripe colour W Covered stripe colour
| Error highligh colour | Out-of-date highlight colour || Covered highlight colour
 Span

Specifies how far back data should be
loaded, since [ast compile, (.0 30 s '3
days’, '2 mo', 1 year', or just blank for 0
seconds)

(o) Ccwe J(1w)

Viewer properties

Refresh Policy

The Refresh Policy controls how the Clover Plugin monitors the Coverage Database for new
data. "Manual" is the default and means that you have to click to refresh the coverage data.

"Automatic” means that the Clover Plugin will periodically check for new coverage data for
you.

InlineView

Allow you to customize where coverage data is displayed within the JBuilder IDE. Gutter
marks appear in the left hand gutter of the Java Source Editor. Inline highlights appear

Page 102

Clover 1.3.13 User Manual

directly over your source code. The Coverage Tree is located within the IDES project view,
and provides a per file view of your project coverage.

Sour ce Highlighting

Allows you to fine tune the colours used Clover in its coverage reporting. The 'xxx highlight
colour' is used for Source Highlights and the 'xxx stripe colour' is used for Gutter marks.

Span
Allows you to configure the span used by Clover. See Spans for more information.
Filter Options
(3 Properties for tutorial jpx’
Clover
Paths
=} General E_E“’H’dm’“ _
Find Classes Filter T (
Uik Testing Filker fE'i Ecraplton r(ﬂm rm |
UML DRagram Fiber Block Filters
] J;t?d Select the block contexds to ignare in coverage calculations.
i
Il'l.'!l.va [_] @deprecated [] assart [catch w
Jnvadex [do [el [] Finally [for
Ao ¥ [] instarice 7] methed Hioric
msfé:?; (] swikch (2] sync [try] while
Server Regula Expression Fikers
Personality .
property add
public_static_void_main |
v
exception
Cox) [emen J (10)

Page 103

Clover 1.3.13 User Manual

Filters properties

Block Filters

Allows you to specify contexts to ignore when viewing coverage information.

Regexp Filters

The regexp filters allow you to define custom contexts to ignore when viewing coverage
information.

Working with regexp filters.

Use group of button on the right hand side to Create, Delete, Edit or Copy the selected
filter.

All new and edited regexp filters will be shown in 'blue’, indicating that they are currently
unavailable.

To make anew/edited filter available, you need to delete the existing coverage database
using the Delete Cover age menu item and rebuild your project.

See Coverage Contexts for more information.

4.7.8. Example: Creating a regexp context filter

For the sake of this example, let us assume that we want to remove all private methods from
the coverage reports. How would we go about this?

Open the configuration panel "Tools | Project Properties | Clover | Filters'.

Select Add to create a new Regexp Context Filter.

Select Edit to open up the Regexp Edit dialog.

Set thenametopri vat e.

Since we are creating thisfilter to filter private 'methods, specify the Met hod type.
We now need to define regular expression that will match all private method signatures.
That is, aregexp that will match any method with the pr i vat e modifier. An example of
sucharegexpis(.*) ?private .*.Enterthisregexpinthe regexp field.

Y ou will notice that the name of this new filter appearsin blue. Blue is used to indicate
that thefilter is either new or recently edited and therefore 'unavailable'. To make this
new filter available, select Delete Cover age from the Clover menu and recompile your
project. Once active, you will noticethe pr i vat e filter appears in the Context Filter
Dialog. You will now be able to filter private methods out of your Clover coverage
calulations and reports.

Page 104

Clover 1.3.13 User Manual

4.7.9. FAQ

Q: Why does JBuilder prompt me to save a clover enabled project on exit when | have
not changed any settings?

A: During the project build process, clover needs to modify the projects sourcepath to allow
for various compiler optimizations. Although it only exist for the duration of the build, this
configuration change is what triggers the project to be considered 'dirty’, and hence the save
upon exit dialog.

4.8. Clover JDeveloper 10g Plugin User Guide

Plugin Version 1.0

System Requirements: Oracle JDeveloper 9.0.5.1

4.8.1. Overview

The Clover JDeveloper Plugin alows you to instrument your Java code and view your
coverage results easily from within the Oracle JDeveloper Java IDE.

Page 105

Clover 1.3.13 User Manual

i."‘;- Dracle JDeveloper 10g - Scieenshots. jws @ Wwtonaljpr : E:\tmphscieenshots\utoialsrc\main\tutorial\MoneyB ag_java
File Edit View Search Havigate Run Debug Source Versioning Tools Wndow Help Clover
D@88 o ¥DE B2 o @ «p dE9EED & &GS

| '® Applications - Mavigator 2 x| | [MoneyBag.java |

E: Bosa ph-2 | H.[nnies.aﬂdtlenentqaﬁnneyj;
fj Applications | return;

o é‘ Screenshots)

o O hidoriai (a1.0%)
© (& spplication Sources
& ({7 tutorial (31.9%)
IManey java (-
[Monev.ava (B9.4%)
(B MoneyBag java (87.2%))
B3 MoneyTest java (100%)

fMonies, renoveElenentjold)
IMoney sum = old.add(aMoney):
if [sum.isZero())

return;

fHonics. addElementisum); [Line 45 slatement seecuted 13 imes. |

public hoolean equals(0bject anObject) |
if (isZero())
if [an0bject instanceol IMoney)
return | (IMoney)andbjece] . isZera()

if {anlbject instanceof MHoneyBag) |
HopeyBay atloneyBage (MoneyBay)anObjectc:
if [aMoneyBag. fHonies.aize() '= fMoniea.size())
return false;

g appiications | 2 System|| @ Conne... | (3]

| =] MoneyBag java - Structure ax
]E)_BHLM_Q'G | for [Envmeration e= fMonies.elements(); e.hasMoreElements(); 1 {
| Coverage Money m= (Money) e.nextElementc():

if |!aMoneyBag. contains (m))
return false;

| Methods: 16717 94.1% D)
|| Staternents: 81770 87.1% -
|| Condifionals; 32138 84.2% DN |

¥

retura trus:

| TOTAL: 27.2% I)
Metrics] | return falae;
| Lines of Code: 128 Classes: - i
NC Lines of Code; 107 Files: - || private Mone findMoney{String currency] |
Methods: 17 Packages: - | [Source | BrClass| b Design[4 15 ; il
EMmp'screenshotstutorialsreimaintutorial MoneyBag.java Line 1 Column 1 Insert | (\Windows: CRL_. Editing

Clover JDeveloper plugin

4.8.2. Installing

Once you have downloaded the Clover JDeveloper Plugin package from
http://www.cenqua.com, you can install the plugin asfollows:

1. shutdown any running instances of JDevel oper

2. remove any previous versions of the the clover plugin jar from
JDEVELOPER _HOVE/ j dev/ | i b/ ext

3. copy CLOVER HOWE/ | i b/ cl over -j devel oper. j ar intothe
JDEVELOPER _HOVE/ j dev/ | i b/ ext directory, and restart JDeveloper.

Y ou will need alicense to activate your plugin.

« Download your clover.license file from http://www.cengqua.com/licenses.jspa. Evaluation
licenses are available free of charge.
» Placethe clover.license file next to the clover-jdevel oper.jar filein the

Page 106

Clover 1.3.13 User Manual

JDEVELOPER_HOVE/ j dev/ | i b/ ext directory.

If you are upgrading from a previous version of the Clover JDeveloper Plugin, you will also
need to do the following.

« Editthe JDEVELOPER HOVE/ j dev/ system .. /i de. properti es file
removing all of the Mai nW ndow. Tool bar . i t emproperty referencesto Clover.

4.8.3. Uninstalling

To uninstall the Clover JDeveloper Plugin:

1. shutdown any running instances of JDevel oper

2. delete the clover-jdeveloper.jar file from the JDEVELOPER_HOME/ j dev/ | i b/ ext
directory.

3. restart JDeveloper

4.8.4. Configuring your Project

Add clover jar to your project classpath.

« Open the project properties "Tools | Project Properties... " or by double clicking on the
project within the Navigator window.

« Goto"Profiles| Active Profile | Libraries'. Create anew library and add the
JDEVELOPER _HOVE/ j dev/ | i b/ ext/cl over-j devel oper. | ar tothe
libraries classpath. Add this library to your projects 'Selected Libraries.

(The clover jar needs to be in the classpath because it is needed at runtime when you are
running your unit tests and at compile time when you are compiling instrumented source
files)

4.8.5. Getting Started

This getting started guide will take you through the steps required to generate Clover
coverage for your project.

1. Ensure that you have configured your project to use Clover.
2. Enable Clover, by selecting the 'Enable Clover' check box in the "Tools | Project
Properties... | Clover" interface.

3. Turn on clover instrumentation by selecting the toolbar item

4. Rebuild your project using any of the build mechanisms provided by JDeveloper.
5. Run your project by running the unit tests or some other means.
6
7
4

. Refresh the latest coverage data by clicking the toolbar item.
. View the project coverage data by selecting the toolbar item.

.8.6. Viewing Cover age Results

Page 107

Clover 1.3.13 User Manual

Code Coverage information will be available for viewing within JDeveloper after you have
built and run your application. The display of coverage information within the IDE can be
controlled via the toggle button in the IDE toolbar, or the "Show Coverage" menu item in the
"Clover" menu.

Within the Application Navigator, you will see coverage percentages displayed next to
projects, packages and source files that have been clovered. The coverage displayed at each
level of the Navigator is the sum of coverage of the packages or source files below it. That is,
the coverage of a package is the sum of the coverage for the files contained within the
package and all sub-packages.

= Systerm - Navigatar L x
e el D =

M Workspaces
@ B Screenshots jws
o | tutorial.jpr (91.9%)
@ s Sources
@ ([P tutorial

B IMoney.java (-
E Moneyjava (39.4%)
E&- MoneyBadg.java (37.2%)
52 MoneyTest java (100%)

®Applications || [Systerm | 3 Conne... || ([

Application Navigator coverage overlay

Within the Structure window, you can view a summary of the coverage details for the
currently 'active node’. This summary information includes the coverage of methods,
conditional and statements, as well as the number of lines of code, files, classes and packages
associated with this summary.

Page 108

Clover 1.3.13 User Manual

MoneyBag.java - Structure nx

Bl

~Coverage

Methods: 16717 94.1% DU
Staterments: 6170 87.1% DT
Conditionals: 32138 54.2% DT

TOTAL: BF2% T
~Metrics

Lines of Code: 133 Classes: -

HC Lines of Cade: 113 Files: -

Methods: 17 Fackages: -

Structure window coverage summary panel

In addition, the plugin can annotate the Java code with the coverage information. Green
indicates that the line of source has been 'covered’, red indicates it has not been 'covered’, and
yellow indicates that the coverage information is out of date. The tooltips indicate exactly

how many times a line has been executed, or an expression has evaluated to true etc.

| IMoney sum= old.add({aMoney) :
| if (sum.isZerol)])

| return;

| fMonies. addElenent (sum) ;

public boolean equals(0bject anObject) [
if [izsZerol))
if [an0bject instanceof IMoney)
return [[(IMonev)anObject).isZerol]:

if (anfbject instanceof MoneyBag) | [Line 54: statement not executed.

MonevEag aMonevBag= (MonevBag)anObject;
if [aMonevBag.fMonies.size() '= fMonies.size())
return false;

| for [(Enumeration e= fMonies.elements(); e.hasMoreElements(); | {
| Money m= (Money) e.nextElement():
| if ['aMonevyBag.containsim))

=

Page 109

Clover 1.3.13 User Manual

editor pane with overlaid coverage information

4.8.7. Working with Clover

There are a number of menu items and toolbar actions that allow you to interact with Clover.
They are asfollows:

« Show Coverage When selected, coverage information will be displayed within the IDE,
as decided in the previous section.

« Build with Clover. When selected, Clover will instrument your source files during the
JDeveloper build cycle.

» Refresh Coverage Will force the plugin to load the latest coverage information. Y ou will
need to refresh after building or running your application.

« Delete Coverage Delete the current coverage database.

« Generate Report... Launches the report generation wizard that will take you through the
steps required to generate a Pdf, Html or XML report.

« Filter Coverage... Launches adialog to set the context filter.

4.8.8. Compilation Options

Configuration options for Clover are accessible on the Clover panel of the Project Properties
dialog. Thefirst Tab on this panel provides compilation options:

Page 110

Clover 1.3.13 User Manual

& Project Propenties - E:\Mimp\screenshots\tutorial\tutorial jpr

¢ Common -
Input Paths ¥ Enable Clover
e ;m G | ;
UgINEss Lomponants
. F InitString Filtering
Dependencias The Intsting spetifies the name of the coverage Fine tune which source files you want instrumented by Clover.
JIEE database file. Select Autormatic’ to have Clover Specify Ant stle pattiemsets to include or exclude parficular
Modelers manage this lacation for you. source files (comma or space separated).
Offline Database
= Includes:
Technology Scope ' ftomatic :
e Profies ~ Excludes:
() User specified:
T Development Spoc ;
Paths
CodaGoach relative to project directony.
o Campiler it ' -
@ Debugger
Javadoo Flush Policy Language Level
Iy '-p-“”‘:“es The Flush Polity controls haw Clover writes Spacify which java language leval you wauld like suppartad by
. rofiler coverage data to disk at runtime. the Clover instrumenter.
Runner
® Directed 13 i
) Interval Flush intensal
) Threaded MSEcs
Help | on | | Cancel
Compiler configuration screen
Initstring

This section controls where the Clover coverage database will be stored. Select 'Automatic'
to have Clover manage this location for you (relative to your project directory). Select 'User
Specified' to nominate the path to the Clover coverage database. Thisis useful if you want to
use the plugin in conjunction with an Ant build that already defines the location of the Clover
coverage database.

Flush Policy

The Flush Policy controls how Clover writes coverage data to disk at runtime. See Flush
Policies.

Filtering

Allows you to specify a comma separated list of set of Ant Patternsets that describe which
filesto include and exclude in instrumentation. These options are the same as those described
in the <clover-setup> task.

Page 111

Clover 1.3.13 User Manual

Language L evel

Allows you to specify which language features you would like Clover to support. If you use
asserts within your code, you would need to select '1.4" or higher, if you use enums, then you
need to select '1.5'.

4.8.9. Viewing options

The second Tab on the configuration panel provides viewing options;

& Pioject Properties - E:\impAscreenshots\lutorial\tutorial jpr
@ Common -
input Paths vl Enable Clover
€ Busingss Componants

Clnver " Refresh Policy inline View

Dependenties The Refrash Palicy contrals how fraguerity Clovar The inlife coverage contnls alkow you 1o custamize the

JIEE Inaks for & changs in covarage data. cavarage information that is displayved directly within the editar

Modelars and associated windaws.

Offline Database i Manual

e P ;I’Iechnulug! Scope O Mastomatic. Fetesh oy MSecs [v Gutter vl Overlay
rofiles .
& Development [¢ Inling (vl Summany

FPaths =] ToolTips
CadeCoatch

o Campiler

o Debugger Span
Javadoc Spacifies how far back data should be loaded,

L Libranies since last compile. (e.g. 30 5, '3 days’, '2 ma’, 1
Profiler year, or just blank for 0 seconds)

& Runnar

Span: |
Help ok || cancal
Viewer configuration screen
Refresh Policy

The Refresh Policy controls how the Clover Plugin monitors the Coverage Database for new
data. "Manual" is the default and means that you have to click button to refresh the coverage
data. "Automatic" means that the Clover Plugin will periodically check for new coverage
datafor you.

InlineView

Page 112

Clover 1.3.13 User Manual

Allows you to customize where coverage datais displayed within the JDeveloper IDE. Gutter
marks appear in the left hand gutter of the Java Source Editor. Inline refers to the annotations
that appear directly over your source code. Overlay refers to the coverage information
displayed within the Application Navigator window, and Summary refers to the coverage
summary panel available within the Structure Window.

Span
Allows you to configure the span used by Clover. See Spans for more information.

4.8.10. Filter Options

The third Tab on the configuration panel provides viewing options;

Q- Common
Input Paths ;
Ant Fitter |
@ Business Components
Clover
Dependencies Selectthe block contexts to gnore in coverage calculations.
J2EE
Modelers [l gdeprecated [l assert] catch [l constructar
Ofine Database _
Technology Scope [] do [-] else [finalky] for
] I;mfl;las | " K [instance [_] method [static
Ve 15
Pat:ﬁsm 7] switch [l syme Cltry] while
CodeCoach
& Compiler -Regular Expression Filters
@ Debugger
Javadoe hate | | Add
Libraries otected |
@ Profiler ngging || Remove
@ Runner | ﬁ
| e |
| com |
_ wew | ok || cancel
Filter configuration screen
Regexp Filters

Page 113

Clover 1.3.13 User Manual

The regexp filters allow you to define custom contexts to ignore when viewing coverage
information.

Working with regexp filters.

» Usegroup of button on the right hand side to Create, Delete, Edit or Copy the selected
filter.

« All new and edited regexp filters will be shown in 'blue’, indicating that they are currently
unavailable.

« To make anew/edited filter available, you need to delete the existing coverage database
using the menu item and rebuild your project.

See Coverage Contexts for more information.

Block Filters

Allows you to specify contexts to ignore when viewing coverage information. For example,
selecting the if context will remove if body (not the conditional) from the coverage reports.

4.8.11. Example: Creating aregexp context filter

For the sake of this example, let us assume that we want to remove all private methods from
the coverage reports. How would we go about this?

Open the configuration panel "Tools | Project Properties | Clover | Filters'.

Select Add to create a new Regexp Context Filter.

Select Edit to open up the Regexp Edit dialog.

Set thenameto pri vat e.

Since we are creating thisfilter to filter private 'methods, specify the Met hod type.

We now need to define regular expression that will match all private method signatures.
That is, aregexp that will match any method with the pr i vat e modifier. An example of
sucharegexpis(.*) ?private .*.Enterthisregexp intheregexp field.

e You will notice that the name of this new filter appearsin blue. Blue is used to indicate
that the filter is either new or recently edited and therefore 'unavailable'. To make this
new filter available, select from the Clover menu and recompile your project. Once
active, you will noticethe pr i vat e filter appearsin the Context Filter Dialog. Y ou will
now be able to filter private methods out of your Clover coverage calulations and reports.

4.8.12. Sour ce Highlight Options

The configuration panel for the source highlighting options is available in the JDeveloper
preferences located at "Tools | Preferences | Clover”.

Page 114

Clover 1.3.13 User Manual

& Preferences |
@ Ervirontment o
Accelerators Source Highlighting
o "D‘Udi_t The source highlighting configurations allow you to customise the colour of
©- Business Components source highlights and gutter marks.
Clover
&= Code Editor Covered Cavered highlighting is used far lines of code that have
Campare coverage.
& oo Mot Covered
Datahase Connections Out Of Date] enable
Data Caontrol Palette
@ Debugger [] Use Background Colour D
Ceployment
v
& Diagrams [¥] Use Gutter Colour [
Documentation

Extension Manager

File Types

Generatars

Java Visual Editor

JClient

JBP and HTML Visual Edit
metrics

TCP Packet Monitar

U visual Editor

Web Browser and Proxy |=

[1»]

Help 0K | ‘ Cancel

Compiler configuration screen

TE?

4 [E

Sour ce Highlighting

The source highlighting configuration panel alows you to specify the colours used by clover
when it renders coverage information in the JDeveloper editor panel. The Background colour
represents the colour used to highlight each line of source code, the Gutter colour is the
colour of the mark located in the editors |eft side gutter.

4.8.13. FAQ

Q: Clover has caused blank actionsto appear in my Main Toolbar.

A: This happens when you are upgrading to version 1.0RC1 of the plugin. To fix this, you
will need to edit the JDEVELOPER_HOWVE/ j dev/ system .. /i de. properti es filg
removing all of the Mai nW ndow. Tool bar . i t emproperty references to Clover.

Page 115

Clover 1.3.13 User Manual

5. Command Line Tools

5.1. Clover Command Line Tools

Clover provides a set of Command line tools for integration with legacy build systems such
as Make, or custom build scripts. If you use Jakarta Ant to build your project, a set of
Clover Ant Tasksprovideeasier Ant integration.

To use the tools in your build system, the synopsisis.

Copy and instrument your source files using Cloverinstr.

Compile the instrumented source files using a standard java compiler.

Execute your tests using whatever framework.

(Optional) If you have multiple separate coverage databases, merge them using
CloverMerge

Use either the XmlIReporter, HtmlReporter, ConsoleReporter or SwingViewer to view the
measured coverage results.

PobhE

o

5.1.1. Command linetooals:

Cloverlnstr Copies and instruments individual java source
files, or a directory of source files.
CloverMerge Merges existing Clover databases to allow for
combined reports to be generated.
XmlIReporter Produces coverage reports in XML
HtmlIReporter Produces coverage reports in HTML
PDFReporter Produces coverage reports in PDF format
ConsoleReporter Reports coverage results to the console
SwingViewer Launches the Swing coverage viewer
5.2. Cloverlnstr

This tool copies and instruments a set of Java source files specified on the command line.
The output of the instrumentation process is instrumented java sour ce; you will then need
to compile the instrumented source using a standard Java compiler.

5.2.1. Usage

Page 116

Clover 1.3.13 User Manual

java com cenqua. cl over. C overlnstr

5.2.2. Params

-i, --initstring <file>

-s, --srcdir <dir>

-d, --destdir <dir>

5.2.3. Options
-p, --flushpolicy <policy>

-f, --flushinterval <int>

--instrunentation <policy>
-e, --encodi ng <encodi ng>
-j dk14
-j dk15

-v, --verbose

5.2.4. API Usage

[OPTI ONS] PARAVS [FILES. . .]

Clover initstring. This is the full path to the dbfile
that will be used to construct/update to store
coverage data.

Directory containing source files to be
instrumented. If omitted individual source files
should be specified on the command line.

Directory where Clover should place the
instrumented sources. Note that files will be
overwritten in the desination directory.

Tell Clover which flushpolicy to use when
flushing coverage data to disk. Valid values are
"directed”, ‘interval" and ‘"threaded". With
"interval" or "threaded", you must also specify a
flushinterval using -f. The default value is
"directed".

Tell Clover how often to flush coverage data
when using either ‘“interval' or "threaded"
flushpolicy. Value in milliseconds.

Set the instrumentation strategy. Valid values
are "field" and "class". Default is "class".

Specify the file encoding for source files. If not
specified, the platform default encoding is used.

Direct Clover to parse sources using the JDK1.4
grammar.

Direct Clover to parse sources using the JDK1.5
grammar.

Enable verbose logging.

Cl over |l nstr provides a smple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment

illustrates use of the API:

Page 117

Clover 1.3.13 User Manual

i mport com cenqua. cl over. Cl overlnstr;

String [] cliArgs = { "-jdk14", "-i", "clover.db", "-d", "build/instr"”, "Money.java
int result = Cloverlnstr. mainlnpl(cliArgs);
if (result !'= 0)
/1 problemduring instrunentation
}
5.2.5. Examples
java com cenqua. cl over. C overlnstr -i clover.db -s src -d build/instr

Find all java source files in the directory "src”, copy and instrument them into the directory
"build/instr”, which will be constructed if it does not exist. Coverage database "clover.db” is
initialised.
java com cenqua. cl over. d overlnstr -jdkl1l4 -i clover.db -d ../../build/instr \
Money. j ava | Money. j ava

Copy and instrument the source files "Money.java' and "IMoney.java' into the directory
".[.Jouild/instr'. Use the IDK 1.4 grammar (ie. support the 'assert' keyword).

5.3. CloverMerge

Thistool merges existing Clover databases to allow for combined reports to be generated.

5.3.1. Usage

java com cenqua. cl over. C over Merge [OPTI ONS] PARAMS [DBFI LES. . .]

5.3.2. Params

-i, --initstring <file> Clover initstring. Clover initstring. This is the
path where the new merged database will be
written.

5.3.3. Options

-s, --span <interval > Specifies the span to use when reading
subsequent databases to be merged. This
option can be specified more than once and
applies to all databases specified after the
option, or until another span in specified

-V, --verbose Enable verbose logging.

Page 118

Clover 1.3.13 User Manual

-d, --debug Enable debug logging.

5.3.4. APl Usage

Cl over Mer ge provides a simple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

i mport com cenqua. cl over. Cl over Mer ge;
String [] cliArgs = { "-i", "new.db", "projl.db", "proj2.db", "-s", "10s", "proj3.
int result = C overMerge. mai nl npl (cli Args);

if (result I'=0) {
/1 problemduring instrunentation
}

5.3.5. Examples

java com cenqua. cl over. C over Merge -i new. db projl.db proj2.db
Merges proj1.db and proj2.db into the new database new.db. A span of zero seconds is used.

java com cenqua. cl over. Cl over Merge -i new.db projl.db -s 30s proj2.db \
proj 3. db

Merges projl.db, proj2.db and proj3.db into the new database new.db. A span of zero
seconds is used for proj1.db, and a span of 30 secondsis used for proj2.db and proj3.db.

5.4. XmlIReporter
Produces an XML report of Code Coverage for the given coverage database.

5.4.1. Usage

java com cenqua. cl over.reporters.xm . XM_.Reporter [OPTI ONS] PARANMS

5.4.2. Params

-i, --initstring <file> The initstring of the coverage database.
-0, --outfile <file> The file to write XML output to.

5.4.3. Options

Page 119

Clover 1.3.13 User Manual

-t, --title <string> Report title
-1, --lineinfo Include source-level coverage info
-s, --span <interval > Specifies how far back in time to include

coverage recordings from since the last Clover
build. See Using Spans. Defaults to 0 seconds.

-d, --debug Switch logging level to debug

-V, --verbose Switch logging level to verbose

5.4.4. APl Usage

XM_Report er provides a smple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

i mport com cenqua. cl over.reporters. xm . XM_Reporter;

String [] cliArgs = { "-i", "clover.db", "-0", "coverage.xm" };
int result = XM_Reporter. mainlnpl(cliArgs);
if (result !'=0)
/1 problemduring report generation
}
5.4.5. Examples
java com cenqua. cl over.reporters. xm . XM_Reporter -i clover.db -o coverage. xnl

Read coverage for the Clover database "clover.db”, and produce a report in the file
"coverage.xml"

java com cenqua. cl over.reporters. xm . XM_Reporter -1 -t "My Coverage" -i clover.db -0 ¢

Produce the same report as above, but include source-level coverage information, and a
report title.

5.5. HtmIReporter
Produces an HTML report of Code Coverage for the given coverage database.

5.5.1. Usage

java com cenqua. cl over.reporters. htm . H m Reporter [OPTI ONS] PARANMS

Page 120

Clover 1.3.13 User Manual

5.5.2.

-0,

5.5.3.

-1,

- bw

-h,
-p’

- b,

-tw,

-C,

Params

--initstring <file>
--outputdir <dir>
Options

--title <string>
--hidesrc

--sour cepat h <pat h>
- - hi debars
--tabwidth <int>
--orderby <compname>

--ignore <string>

The initstring of the coverage database.

The directory to write the report to. Will be
created if it doesn't exist.

Report title

Don't colour syntax-hilight source - smaller html
output.

Don't render source level coverage.

The source path to search when looking for
source files.

Don't render coverage bars.

The number of spaces to subsitute TAB
characters with. Defaults to 4.

comparator to use when listing packages and
classes. Default is PcCover edAsc. valid values
are

Al pha

Alpabetical.

PcCover edAsc

Percent total coverage, ascending.

PcCover edDesc

Percent total coverage, descending.

El ement sCover edAsc

Total elements covered, ascending

El ement sCover edDesc

Total elements covered, descending

El enent sUncover edAsc

Total elements uncovered, ascending

El enent sUncover edDesc

Total elements uncovered, descending

Comma or space separated list of contexts to
ignore when generating coverage reports. Most
useful one is "catch". valid values are "assert",
"static”, "instance", "constructor”, "method",
"switch", "while", "do", “for", "if", "else", "try",
"catch”, "finally", "sync", or the name of a

Page 121

Clover 1.3.13 User Manual

user-defined Context. See Using Contexts

-s, --span <interval > Specifies how far back in time to include
coverage recordings from since the last Clover
build. See Using Spans. Defaults to 0 seconds.

-d, --debug Switch logging level to debug

-v, --verbose Switch logging level to verbose

5.5.4. APl Usage

Ht Ml Report er provides a simple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

i mport com cenqua. cl over.reporters. ht m . H m Reporter;
String [] cliArgs = { "-i", "clover.db", "-o0", "clover_htm" };
int result = Hm Reporter. mainlnpl(cliArgs);

if (result = 0)
/1 problemduring report generation
}

5.5.5. Examples

java com cenqua. cl over.reporters. htm . H m Reporter -i clover.db -o clover_htmn

Read coverage for the Clover database "clover.db”, and produce a report in the directory
"clover_html"

java com cenqua. cl over.reporters. htm . H m Reporter -c El enent sCover edAsc

-t "My Coverage" -i clover.db -o clover_htm

Produce the same report as above, but include a report title, and order lists by total elements
covered rather than percentage covered.

5.6. PDFReporter

Produces a PDF summary report of Code Coverage for the given coverage database.

5.6.1. Usage

java com cenqua. cl over.reporters. pdf. PDFReporter [OPTI ONS] PARAMS

Page 122

Clover 1.3.13 User Manual

5.6.2. Params

-i, --initstring <file>
-0, --outputfile <file>
5.6.3. Options

-t, --title <string>

-b, --hidebars

-p, --pagesize <size>

-c, --orderby <conpname>

-1, --ignore <string>

-s, --span <interval >
-d, --debug
-v, --verbose

The initstring of the coverage database.

The file to write the report to.

Report title
Don't render coverage bars.

Specify the page size to render. Valid values are
"Letter" and "A4". Default is "A4".

comparator to use when listing packages and
classes. Default is PcCover edAsc. valid values
are

Al pha

Alpabetical.

PcCover edAsc

Percent total coverage, ascending.

PcCover edDesc

Percent total coverage, descending.

El enent sCover edAsc

Total elements covered, ascending

El ement sCover edDesc

Total elements covered, descending

El ement sUncover edAsc

Total elements uncovered, ascending

El ement sUncover edDesc

Total elements uncovered, descending

Comma or space separated list of contexts to
ignore when generating coverage reports. Most
useful one is "catch". valid values are "assert",
"static", "instance", "constructor", "method",
"switch", "while", "do", “"for", "if", "else", "try",
"catch”, "finally", "sync", or the name of a
user-defined Context. See Using Contexts

Specifies how far back in time to include
coverage recordings from since the last Clover
build. See Using Spans. Defaults to O seconds.

Switch logging level to debug

Switch logging level to verbose

Page 123

Clover 1.3.13 User Manual

5.6.4. API Usage

PDFReport er provides a simple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

i mport com cenqua. cl over.reporters. pdf. PDFReporter;

String [] cliArgs = { "-i", "clover.db", "-0", "coverage.pdf" };
int result = PDFReporter. mainlnpl (cliArgs);
if (result !'= 0)
/1 problemduring report generation
}
5.6.5. Examples
java com cenqua. cl over.reporters. pdf. PDFReporter -i clover.db -o coverage. pdf

Read coverage for the Clover database "clover.db”, and produce a pdf report in the file
"coverage.pdf"”

java com cenqua. cl over.reporters. pdf. PDFReporter -c El enent sCover edAsc
-t "My Coverage" -i clover.db -o coverage. pdf

Produce the same report as above, but include a report title, and order lists by total elements
covered rather than percentage covered.

5.7. ConsoleReporter

Reports Code Coverage for the given coverage database to the console.

5.7.1. Usage
java com cenqua. cl over.reporters. consol e. Consol eReporter [OPTI ONS] PARAMS

5.7.2. Params

-i, --initstring <file> The initstring of the coverage database.

5.7.3. Options

-t, --title <string> Report title

-1, --level <string> The level of detail to report. Valid values are

Page 124

Clover 1.3.13 User Manual

"summary”, “class”, "method", "statement".
Default value is "summary".

-p, --sourcepath <path> The source path to search when looking for
source files.
-s, --span <interval > Specifies how far back in time to include

coverage recordings from since the last Clover
build. See Using Spans. Defaults to 0 seconds.

-d, --debug Switch logging level to debug

-V, --verbose Switch logging level to verbose

5.7.4. APl Usage

Consol eReport er providesasimple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

i mport com cenqua. cl over.reporters. consol e. Consol eReporter;
String [] cliArgs = { "-1", "method", "-t", "Method Coverage", "-i", "clover.db" };
int result = Consol eReporter. mainlnpl(cliArgs);

if (result !'= 0)
/1 problemduring report generation
}

5.7.5. Examples

java com cenqua. cl over.reporters. consol e. Consol eReporter -i clover.db

Read coverage for the Clover database "clover.db", and produce a summary report to the
console.

java com cenqua. cl over.reporters. xm . XM_Reporter -1 "method" -t "Method Coverage" -i c

Produce the same report as above, but include method-level coverage information, and a
report title.

5.8. SwingViewer

Launches the Swing Viewer to allow interactive browsing of Code Coverage.

5.8.1. Usage

Page 125

Clover 1.3.13 User Manual

java com cenqua. cl over.reporters.jfc.Viewer [OPTI ONS] PARAMS

5.8.2. Params
-i, --initstring <file> The initstring of the coverage database.
5.8.3. Options

-p, --sourcepath <path> The source path to search when looking for
source files.

-s, --span <interval > Specifies how far back in time to include
coverage recordings from since the last Clover
build. See Using Spans. Defaults to 0 seconds.

-tw, --tabw dth <nunber> Width to use when rendering tabs in source

code.

5.8.4. APl Usage

Swi ngVi ewer provides a smple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

i mport com cenqua. cl over.reporters.jfc.Viewer;
String [] viewerArgs = { "-i", "clover.db" };
int result = Viewer. mainlnpl(viewerArgs);

if (result !'=0)
/1 problem
}

5.8.5. Examples
java com cenqua. cl over.reporters.jfc.Viewer -i clover.db

Launch the Swing Viewer reading the Clover database "clover.db".

For more information about using the Swing Viewer, see the Using The Swing Viewer.

Page 126

Clover 1.3.13 User Manual

6. Advanced Usage

6.1. Background: The Clover Coverage Database

This section provides background information on the structure, lifecycle and management of
the Clover database.

6.1.1. Database structure and lifecycle

The Clover database consists of several files that are constructed at various stages of the
instrumentation and coverage recording process. The following table shows the various files
created if Clover isinitialised with an initstring of "clover.db”

Registry file

Filename: cl over. db

Description: The Registry file contains information about al of the classes that have been
instrumented by Clover. Thisfile does not contain any actual coverage recording data.

Lifecycle: The Registry file is written during the instrumentation process. If an existing
Registry file isfound, the existing file is updated. If no Registry fileis found, a new Registry
file is created. The Registry file is read by Clover-instrumented code when it is executed,
and also during report generation or coverage browsing (such as via an IDE plugin or the
Swing Viewer).

ContextDef file

Filename: cl over. db. ct x

Desription: The ContextDef file contains user-defined context definitions. Note that while
thisfileisin plaintext, it is managed by Clover and should not be edited directly by the user.

Lifecycle: The ContextDef file is written prior to Clover instrumentation. The ContextDef
fileisread during instrumentation, report generation and coverage browsing.

CoverageRecording Files

Filename: clover. doHHHHHHH_TTTTTTTTTT or
clover. dbHHHHHHH _TTTTTTTTTT. 1 (where HHHHHHH and TTTTTTTTTT are both
hex strings)

Page 127

Clover 1.3.13 User Manual

Description: CoverageRecording files contain actual coverage data. When running
instrumented code, Clover creates one or more Coverage Recorders. Each Coverage
Recorder will write one CoverageRecording file. The number of Coverage Recorders created
at runtime depends the nature of the application you are Clovering. In genera a new
Coverage Recorder will be created for each new ClassLoader instance that loads a Clovered
class file. The first hex number in the filename (HHHHHHH) is a unique number based on
the recording context. The second hex number (TTTTTTTTTT) is the timestamp (ms since
epoch) of the creation of the Clover Recorder. CoverageRecording files are named this way
to try to minimise the chance of a name clash. While it is theoretically possible that a name
clash could occur, in practice the chances are very small.

Lifecycle: CoverageRecording files are written during the execution of Clover-instrumented
code. CoverageRecording files are read during report generation or coverage browsing.

Clover 1.3.7 introduced a new failsafe mechanism for writing recording files to disk when using interval-based flush policies.
The mechanism alternates between writing to a primary recording file and a secondary recording file. This prevents datalossin
the event of abnormal JVM termination. The secondary recording file has the same name as a normal recording file but with
. 1 appended to its name.

6.1.2. Managing the Clover database

Because the Clover database can consist of many recording files, you might find it easier to
create the database in its own directory. This directory can be created at the start of a Clover
build, and deleted once coverage reports have been generated from the database.

Although Clover will update an existing database over successive builds, it is in general
recommended that the database be deleted after it is used to generate reports, so that a fresh
database is created on the next build. Doing this improves the runtime performance of
Clover. The <clover-clean> Ant task is provided to allow easy deletion of a Clover database.
Note that the IDE Plugins all have a feature to automatically manage the Clover database for
youl.

6.2. Using Clover with Distributed Applications

In some cases the application you wish to test has many components running on separate
nodes in a network, or even on disconnected machines. You can use Clover to test such
applications, although some additional setup is required.

When deploying you application in container environments, you should also check to ensure
that Clover has sufficient permissions to function.

Page 128

Clover 1.3.13 User Manual

6.2.1. Background: the Clover initstring

At build time, Clover constructs a registry of your source code, and writes it to a file at the
location specified in the Clover initstring. When Clover-instrumented code is executed (e.g.
by running a suite of unit tests), Clover looks in the same location for this registry file to
initialise itself. Clover then records coverage data and writes coverage recording files next to
the registry file during execution. See Clover Database Structure for more information.

6.2.2. Telling Clover how tofind it'sregistry

If you are deploying and running your Clover-instrumented code on different machines, you
must provide a way for Clover to find the registry file, and provide a place for Clover to
write coverage recording files, otherwise no coverage will be recorded. Clover provides three

waysto achieve this:

1. Specify an Initstring that is a globally accessiblefile path
The compile-time initstring should be an absol ute path to the same filesystem location
and be accessible and writable from the build machine and all execution machines. This

could be a path on shared drive or filesystem.

2. Specify an Initstring that isarelative path, resolved at runtime
The compile-time initstring represents arelative path (relative to the CWD of each
execution context). To do this you need to specify r el ati ve="yes" onthe

<clover-setup> task.

3. Specify an Initstring at runtime via System properties
Y ou can override the Clover initstring at runtime via System Properties. Two System

properties are supported
clover.initstring

clover.initstring. basedir

clover.initstring.prefix

If not null, the value of this property is
treated as an absolute file path to the Clover
registry file

If not null (and the cl over.initstring
System property is not set), the value of this
property is used as the base directory for the
file specified at compile-time in the initstring
to resolve the full path to the Clover registry.

If not null (and the cl over.initstringor
clover.initstring. basedir System
properties are not set), the value of this
property is prepended to the string value of
compile-time specified initstring to resolve
the full path to the Clover registry.

To set one of these properties, you need to pass it on the command line when javais

Page 129

Clover 1.3.13 User Manual

launched, using the -D parameter:

java -Dclover.initstring=... myapplication. Server
For application servers, this may involve adding the property to a startup script or batch
file

For methods 2 and 3 above, as part of the test deployment process, you will need to copy the Clover registry file from the
location on the build machine to the approriate directory on each of the execution machines. This needs to occur after the
Clover build is complete, and before you run your tests. Once test execution is complete, you'll need to copy the coverage
recording files from each remote machine to the initstring path on build machine to generate coverage reports.

6.2.3. Classpath Issues

You must put cl over . j ar (or the appropriate Clover plugin jar) in the classpath for any
JVM that will load classes that have been instrumented by Clover. How you go about this
depends on the nature of the application you are testing and the particular environment being
deployed to.

6.2.4. Restricted Security Environments

In some java environments, such as J2EE containers, applet environments, or applications
deployed via Java Webstart, security restrictions are applied to hosted java code that restrict
access to various system resources.

To use Clover in these environments, Clover needs to be granted various security
permissions for it to function. This requires the addition of a Grant Entry to the security
policy file for the Clover jar. For background on the syntax of the policy file, see Default
Policy Implementation and Policy File Syntax. For background on setting Java security
policiesin general, see Permissions in the Java 2 SDK.

Recommended Permissions

Clover requires access to the java system properties for runtime configurations, as well as
read write access to areas of the file system to read the clover coverage database and to write
coverage information. Clover also uses a shutdown hook to ensure that it flushes any as yet
unflushed coverage information to disk when java exits. To support these requirements, the
following security permissions are recommended:

grant codeBase "file:/path/to/clover.jar" {
perm ssion java.util.PropertyPermssion "*", "read";
perm ssion java.io.FilePerm ssion "<<ALL FILES>>", "read, wite";
perm ssi on java. |l ang. Runti nePer m ssi on "shut downHooks" ;

Page 130

http://java.sun.com/products/javawebstart/

Clover 1.3.13 User Manual

6.3. Flush Policies

How Clover writes coverage data to disk at runtime can be configured by changing Clover's
flush policy. Clover provides three policies: di rect ed, i nt erval andt hr eaded. The
default mode is di r ect ed. The flush policy is set at instrumentation time, either via the
<clover-setup> Ant Task, or viathe IDE plugin configuration screen.

Which flush policy you choose depends on the runtime environment that instrumented code
IS executing in. In the most common unit testing scenarios the default flushpolicy will
suffice. In situations where instrumented code is executing in a hosted environment (like a
J2EE container) and shutting down the VM at the end of testing is not desirable, you will
want to use one of the interval-based flush policies.

Policy Description

directed default. Coverage recordings are flushed only
when the hosting JVM is shut down, or where
the user has directed a flush using the
/ 1/ CLOVER: FLUSH inline directive. Directed
flushing has the lowest runtime performance
overhead of all flush policies (depending on the
use of the flush inline directive). Note that no
coverage recordings will be written if the
hosting JVM is not shut down, or if the
hosting JVM terminates abnormally.

i nterval The interval policy flushes as per the
di rect ed policy, and also at a maximum rate
determined by the interval set at instrumentation
time (see the flushinterval attribute on
<clover-setup>, or IDE plugin guides). The
i nterval mode is a "passive" mode in that
flushing potentially occurs only while
instrumented code is still being executed. There
exists the possibility that coverage data
recorded just prior to the end of execution of
instrumented code may not be flushed,
because the flush interval has not elapsed
between the last flush and the end of
execution of instrumented code. Any
coverage not flushed in this manner will be
flushed if/iwhen the hosting JVM shuts down.
The interval policy should be used in
environments where shutdown of the hosting
JVM is not practical and thread creation by
Clover is not desired. If you don't mind Clover

Page 131

Clover 1.3.13 User Manual

creating a thread, use the t hreaded policy.
Runtime performance overhead is determined
by the flush interval.

t hr eaded The threaded policy flushes as per the
di r ect ed policy, and also at a rate determined
by the interval set at instrumentation time (see
the fl ushi nterval attribute on

<clover-setup>, or IDE_plugin guides). The
t hreaded mode starts a separate thread to

perform flushes. The t hreaded policy should
be used in environments where shutdown of the
hosting JVM is not practical. Runtime
performance overhead is determined by the
flush interval.

6.4. Sour ce Directives

Clover supports a number of directives that you can use in your source to control
instrumentation. Directives can be on a line by themselves or part of any valid single or
multi-line java comment.

6.4.1. Switching Clover on and off

/11 CLOVER: ON
/11 CLOVER: OFF

Switch Clover instrumentation on/off. This might be useful if you don't want Clover to
instrument a section of code for whatever reason. Note that the scope of this directive is the
current file only.

6.4.2. Force Clover to flush

/1| CLOVER: FLUSH

Clover will insert code to flush coverage data to disk. The flush code will be inserted as soon
as possible after the directive. See Flush Palicies.

6.4.3. Change instrumentation strategy

} This source directive has been deprecated and has no effect in Clover 1.3 and above. ‘

Page 132

Clover 1.3.13 User Manual

/[| CLOVER: USECLASS

Clover will use a dtatic holder class rather than a static member variable to support
instrumentation for the current file. The directive must occur before the first top level class
declaration in the file. This directive is useful when you don't want Clover to change the
public interface of your class (in EJB compilation for example).

6.5. Contexts

Clover defines a Context as a part of source code that matches a specified structure or
pattern. Contexts are either pre-defined or user-defined at instrumentation time. Each context
must have a unique name. At report time, you can specify which contexts you would like to
exclude in the coverage report.

Contexts are matched against your source at instrumentation-time. This means you need to re-instrument your code after
defining anew context.

6.5.1. Block Contexts

Block Contexts are pre-defined by Clover. They represent 'block’ syntatic constructs in the
Java language. A full list of supported Block Contexts are shown below.

name description
static Static initializer block
i nst ance Instance initializer block
const ruct or Constructor body
net hod Method body
swi tch Switch statement body
whil e While loop body
do do-while loop body
for For loop body
i f if body
el se else body
try try body
catch catch body

Page 133

Clover 1.3.13 User Manual

finally finally body

sync synchronized block
assert assert statement
@lepr ecat ed a deprecated block

6.5.2. Method Contexts

A Method Context represents the set of methods whose signature matches a given pattern.
Clover provides several pre-defined method contexts:

name regexp description
private (.*)?private .* matches all private methods
property (.*) ?publ i ¢ | matches all property

.*(get|set]|is)[A Z0-9].* getters/setters

You can define your own method contexts via the <met hodCont ext > subelement of
<cl over - set up>, or viathe configuration panel of your Clover IDE Plugin.

When matching method signatures against context regexps, whitespace is normalised and comments are ignored.

6.5.3. Statement Contexts

A Statement Context represents the set of statements that match a given pattern. For example,
you might want to set up a statement context to allow you to filter out 'noisy' statements such
aslogging calls by defining a statement context regexp . * LOG\ . debug. *.

6.5.4. Using Context Filters

This section describes using context filters with Ant. For details of using filters with the IDE plugins, see the individual
documentation for the plugin.

Filtering catch blocks

In some cases you may not be interested in the coverage of statements inside catch blocks.
To filter them, you can use Clover's predefined cat ch context to exclude statements inside
catch blocks from a coverage report:

Page 134

Clover 1.3.13 User Manual

<cl over-report>
<current outfile="clover_htm">
<format type="htm" filter="catch"/>
</current>
</cl over-report>
This generates a source-level HTML report that excludes coverage from statements inside

catch blocks.

Filtering logging statements

To remove logging statements for coverage reports, you'll need to define one or more
statement contexts that match logging statements in your source:

<cl over-setup ...>
<st at enent Cont ext name="1o0g" regexp=""LOG ..*">
<st at ement Cont ext nane="ifl og" regexp="~if \(LOG .is.*">

</6ibver-setup>
This defines two statement contexts. The first matches statements that start with LOG. while
the second matches statements that start with i f (LOG which is designed to match
conditional logging statements such as

if (LOG isDebugEnabl ed()) {
/1 do sone expensive debug | oggi ng

}

Once defining these contexts you now need to re-compile with Clover and then re-run your
tests. Y ou can you then generate a report that excludes logging statements:

<cl over-report>
<current outfile="clover_htm" title="My Coverage">
<format type="htm" filter="1o0g,iflog"/>
</current>
</ cl over-report>

This generates a source-level HTML report that excludes coverage from logging statements.

6.6. Using Spans

The span attribute allows you to control which coverage recordings are merged to form a
current coverage report. By default, Clover only considers coverage recording files that were
written after the last Clover compilation. In some situations you may want to include earlier
coverage recordings. The span attribute lets you do this.

The span attribute takes an Interval which tells Clover how far back in time since the last

Page 135

Clover 1.3.13 User Manual

Clover compilation that coverage recordings should be merged to build the report.
6.7. Extracting cover age data programmatically

6.7.1. Using XPath with Clover's XML reports

Clover's XML reports provide detailed coverage data in a format that is easy to access
programmatically using XPath. XML coverage reports can be generated by the
<clover-report> or <clover-historypoint> Ant tasks, via the Swing Viewer, or using one of
the Clover IDE plugins. The following example XPath expressions show how to extract data
from a Clover XML coverage report:

/ cover age/ proj ect/ netri cs[@t at ement s]

Extracts the total number of statements in the project.

/ coverage/ proj ect/ netri cs[@over edst at enent s]

Extracts the total number of uncovered statements in the project.

/ cover age/ proj ect / package[name=' com f0o. bar']/ metri cs[@t at enent s]
Extracts the total number of statementsin the packagecom f 0o. bar

/ cover age/ pr oj ect / package[name=' com f 0o. bar']/ metri cs[@over edst at ement s]
Extracts the total number of covered statements in the packagecom f 0o. bar

An XPath implementation is shipped with the JDK1.5 distribution. Third party
implementations that work with JDK 1.4 and below include Jaxen, Dom4j, and JXP

The following code example (using the JDK1.5 implementation of XPath) demonstrates
simple extraction of coverage datafrom a Clover XML report:

i mport javax.xm .xpath.*;

XPat h xpat h = XPat hFact ory. newl nst ance() . newXPat h() ;
String stntExpr = "/coverage/ project/ netrics[@&tatenents]";
String coveredSt nt Expr = "/coverage/ project/netrics[@over edst at enents]";
I nput Sour ce i nput Source = new | nput Sour ce("coverage. xm ") ;
Doubl e project Statements = (Doubl e) xpat h. eval uat e(expressi on, i nput Sour ce,
XPat hConst ant s. NUMBER) ;
Doubl e proj ect Cover edSt at enents = (Doubl €) xpat h. eval uat e(expr essi on, i nput Source,
XPat hConst ant s. NUMBER) ;

Page 136

http://jaxen.org/
http://dom4j.org/
http://www.japisoft.com/jxpath/

Clover 1.3.13 User Manual

7. Tutorials

7.1. Using Clover with Ant and JUnit

7.1.1. Using Clover with Ant and JUnit

This tutorial demonstrates how you can use Clover with JUnit to measure the code coverage
of a project. It takes you through the process of compiling a sample project and running the
unit tests from Ant, then modifying the build file to add Clover targets and properties. It is
split into three parts covering Current Reports, Historical Reports and Advanced Features.

The Clover Tutorial describes different features of Clover in a step-by-step approach. Once
you've completed the Tutorial, have alook at Using Clover Interactively and Using Clover in
Automated builds for examples of how to pull the different aspects of Clover together for
your project.

Beforeyou start
Y ou will need Clover, Ant and JUnit installed on your system, preferably the latest versions.

Instructions for installing Ant can be found in the Apache Ant User Manual.

Instructions for installing Clover can be found in the Installation Options section.

For instructions on installing JUnit consult the JUnit website. To allow JUnit to work with
Ant, you must also copy <JUNI T_HOVE>/ j uni t . j ar into <ANT_HOME>/|i b.

The Clover tutorial assumes that you have basic knowledge of creating and modifying Ant
build files. The Apache Ant User Manual provides any additional support you may require in
this area. It is also assumed that you have a basic understanding of JUnit. A good
introduction to JUnit can be found in the JUnit Cookbook. This Clover tutorial is crafted
around the example code described in the Cookbook.

Thetutorial work area

The source files for this tutoria are located in the standard Clover distribution, under the
'‘tutorial' directory. In the 'tutorial’ directory you will find the initia build file and the
directory 'src' which contains the java files that you will be testing. These sample files are
shipped with JUnit and described in the JUnit Cookbook. They represent a simple library for
dealing with money and provide methods to add, subtract, and collect money etc. The
MoneyTest . j ava file contains al the unit tests for the library and utilises the JUnit

Page 137

http://www.apache.org/dist/ant/binaries/
http://www.junit.org/index.htm
http://www.junit.org/index.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

Clover 1.3.13 User Manual

framework.
7.1.2. Part 1 - Measuring cover age with Clover

I ntroduction

Part 1 of the Clover Tutorial focuses on the creation and interpretation of '‘Current’ Clover
reports. Current reports display graphical and numerical data relating to the most recent
coverage data collected for the project. This tutorial covers the initial creation of coverage
data before stepping you through how to generate and interpret coverage reports. Well the
look at how to improve the coverage achieved by tests and regenerate the coverage reports.
This section covers the very basic features of Clover and is an important first step for all
users.

In this tutorial we will be compiling and unit-testing the Money library provided in the
tutorial / src directory, then using Clover to determine how well the unit tests actually
test the library.

In the first step, we will compile the Money library and run tests against it.

Compiling and running

In this step we will compile the library and run the tests against it without using Clover to
check that everything is working correctly before including Clover in the next step. In the
tut ori al directory you will find the initial build file which contains targets for compiling,
running and cleaning the build.

Compiling
To compile the java files use the command ant code.

Output should be similar to the following:

$ ant code
Buil dfile: build.xnl

code:
[mkdir] Created dir: c:\clover\tutorial\build
[javac] Conpiling 4 source files to c:\clover\tutorial\build

BUI LD SUCCESSFUL
Total tinme: 9 seconds

This shows that the java source files have been compiled and the class files have been placed
inthec: \cl over\tutorial\build directory.

Page 138

Clover 1.3.13 User Manual

Running the tests
To run the JUnit tests use the command ant t est.

Output should be similar to the following:

$ ant test
Bui l dfile: build.xm

test:
[javal
[java] Time: 0.041

[javal] OK (22 tests)

BUI LD SUCCESSFUL
Total tinme: 3 seconds

This shows that all the tests have been run and have passed.

To keep things simple we are not using the optional <junit> task that ships with Ant to run the JUnit tests. The <junit> task
provides many advanced features for controlling the execution of unit tests and generating unit test reports. Modifying the
build.xml file to use the <junit> task is | eft as an exercise for the reader.

We have now compiled the Money library, and run tests against it. In the next step, we'll add
Clover targets and properties to the build file to enable measurement of code coverage.

Adding Clover targets

Now that we've compiled the code and run unit tests, we are ready to add Clover targets and
properties to the build file so we can measure the code coverage of the tests. Modifying the
build file is trivia. Firstly we need to add a target to enable and configure Clover for the
build.

Adding Clover task definitions

Load the bui | d. xm file into your favourite text editor and add the Clover Ant task and
type definitions:

<t askdef resource="cl overtasks"/>
<typedef resource="cl overtypes"/>

These lines define the Clover Ant tasks which can then be used within the build file.

Page 139

Clover 1.3.13 User Manual

Adding atarget to enable Clover

Add atarget calledwi t h. cl over which will enable and configure Clover for abuild:

<target name="with.clover">
<cl over-setup initStri ng="deno_cover age. db"/ >

</target>
The initString value defines the location of the Clover coverage database. During
compilation, Clover stores information about all the artifacts in your sourcebase to thisfile. I
the database exists already, Clover updates it. If it doesn't exist, Clover will create a
fresh database file. When instrumented code is run, Clover uses this database to initialise
itself and then writes coverage recording files alongside the database file.

Adding Clover to the build classpath

The cl over. j ar needs to be in the runtime classpath when you execute the tests. To
achieve this, add the linein bold below to the bui | d. cl asspat h Ant path:

<pat h id="build. cl asspat h">
<pat hel ement pat h="${ant. hone}/lib/clover.jar"/>
<pat hel ement pat h="${ant. hone}/lib/junit.jar"/>
<pat hel ement pat h="${buil d}"/>

</ pat h>

This assumes that you have installed cl over.jar in ANT_HOVE/ | i b. If you've installed it elsewhere, adjust the path
accordingly.

Once you've made these changes, you can save the bui | d. xm file. We will add some
more Clover targets later to perform coverage reporting, but first we'll re-compile the Money
library with Clover and re-run the tests to obtain coverage data.

Testing with Clover

We are now ready to measure the coverage of the tests over the Money library.

Compilewith Clover

Ensure that your build has been cleaned by running ant cl ean. Thisdeletes al class files
from previous compilations.

Compile your code with Clover using thecommand ant wi t h. cl over code.

Page 140

Clover 1.3.13 User Manual

Y ou will get output similar to the following:

$ ant with.clover code
Buil dfile: build.xn
w t h. cl over:

conpi |l e:

[mkdir] Created dir: C\clover\tutorial\build

[javac] Conpiling 4 source files to C\tutorial\build

[clover] Clover Version 1.x, built on ...

[clover] No coverage database 'C \clover\tutorial\denb _coverage. db'
found. Creating a fresh one.

[clover] Clover all over. Instrunented 4 files.

The result of this processis that your source files have been instrumented by Clover and then
compiled as usual.
Running the tests

We now need to run the tests again (with the command ant t est). Thiswill run the tests,
this time measuring coverage. Output from Ant will be the same as a normal test run:

$ ant test
Bui l dfile: build.xmn
run:
[javal

[java] Tinme: 0.08
[java] OK (22 tests)
BU LD SUCCESSFUL
Total tinme: 4 seconds
During this test run, Clover measured the code coverage of the tests and wrote the coverage
data to disk. In the next step we'll generate a coverage report from this data to see how well

the tests actually cover the Money library.

Creating areport

We are now ready to produce a coverage report. This section will focus on producing a
Clover HTML report. For information on how to generate other types of Clover reports see
the <clover-report> task.

Adding a Clover report target

Open the bui | d. xm file in a text editor and add the following target to create a HTML
report:

<target name="report.htm" depends="with.clover">

Page 141

Clover 1.3.13 User Manual

<cl over-report>
<current outfile="clover_htm" title="C over denp">
<format type="htm"/>
</current >
</cl over-report>
</target>
The <cur r ent > element specifies that the type of report to be produced is a snapshot report
of the current coverage data (historical reports, which show the progress of coverage over the
life of the project, are discussed later in this tutorial (see Tutorial Part 2). The current report
isto bein HTML format, written to the directory cl over _ht ml and with thetitle Cl over
deno. The output directory cl over _ht m isrelative to the path of the Ant build file. In
this case, the directory cl over _html will be nested within t ut ori al as this is the
location of bui | d. xm .

Generating thereport

Create aHTML report with the command ant report. ht m . You will get output smilar
to the following:

$ ant report. htm
report. htm:
[javal] O over Version 1.x, built on ..
[java] Readi ng data for database at
"c:\clover\tutorial\denp_coverage. db'
[java] Witing Hml report to 'c:\clover\tutorial\clover_htnm"
[java] Done. Processed 1 packages.

BU LD SUCCESSFUL

Total time: 3 seconds
You can now view the report by opening the file
tutorial\clover_htm\index.htm inaweb browser. The next few sections of
the tutorial will show you how to interpret the report and use it to improve the Money library
unit tests.

Interpreting thereport

We will now look at how to interpret the HTML report that you generated in the previous
step.

The screenshot below shows the generated HTML report in a browser. In the top left hand
corner is the list of packages. You can view all classes in the project or select a particular
package to view. Clicking on the name of a package will bring up the relevant classes in the
frame below it. Selecting one of these classes will bring up the source code in the frame on
the right.

Page 142

Clover 1.3.13 User Manual

The header provides summary information relating to the current project. The left hand side
displays the report title and the time of the coverage contained in the report. For current
reports the timestamp is the timestamp of the most recent run of tests. The right hand side of
the header displays metrics for the package, file or project overview which is currently
selected. Depending on the current selection, the metrics include all or a subset of: Number
of Lines of Code (LOC), Number of Non-commented Lines of Code (NCLOC), Number of
Methods, Number of Classes, Number of Files and Number of Packages.

The screenshot shows the report for the Money. j ava source file with the green and red bar
at the top showing the amount of code coverage on this class. The method, statement and
conditional coverage percentages are beside this.

Page 143

Clover 1.3.13 User Manual

E I.':"-.rhu-'rr":.l:utnri.1|"-.r1nw.-.r_|||: mi"-.indﬁn.l\l:ml - Microsoft Internet E:u:ph.rer > Amﬂ
| Fle Edt wview Favorkes Tooks Help |
| Address [Ccloverituborisliclover_htmllindss:. himl x| @60
clover demo ml
Clover coverage Clover coverage report - clover demo file stats: LOEr T3 tiethods: 14
report Eﬂ'tﬂif Yinsestanap: Fri Dec Z0 2002 17:54: 20 EST NOLOC: 55 Classas: 1
Overview Package
Overview Your 30 day evaluation period has expired. Please visit
All Classes http: hec t/clover to obtain a licensed version of Clover,
Al PaEkﬂﬂES Sowrce file Conditionals Statements Methods TOTAL
LETRUILOE (97.9%) Money.java sz2s% s2w 100% seq [N
1 Slpacikadd junil.siaplés. BoOmEys
2
3 r Ly
All Classes 4 * A simple Momey.
Money (&9, 49%) 3 *
MoneyBag (57.2%) i) i
MoneyTes] (700%) 7 public class Money implements IMoney {
B
] private int EAmount: it
1o privace Sceing ECurkency
11
1z Pk
13 * Constructs 4 money from the given aemount and currency.
14 5
15 156 public Money(int smoune, Steing cuerency) |
16 156 fAmOUNT= amount;
17 156 ECuErency= CULrency;:
18 b
1'; '_.-.\'.-i
20 * Rdds @ woney to this money. Forwerds the request bo the adddoney hel
21 #
22 19 public IMoney add(IMoney m) |
23 19 return . addMoney (chis) :
24 H
25 17 public IManey addMoney(Money m) |
26 17 if (m.currencyl).equala(cucrency()l))
27 15 retuen new Money (amount()+m, amount (), curcency(h):
28 2 return MoneyBag. create[cthis, m);
29

H
coverage measured for the Money class

The left-most column shows line numbers and those that contain executable content are
highlighted in blue. The second column shows the number of times a particular line has been
executed during the test run. As you can see, lines 15-17 have been run 156 times by the
JUnit tests, whereas line 28 has only been run twice.

If alineis never executed or has only been partially executed, the entire line of code will be
highlighted in red. Depending on your browser, you can hover the mouse over aline to get a
popup describing in detail the coverage information for that line. The following screenshot

Page 144

Clover 1.3.13 User Manual

shows the coverage on a section of the MoneyBag. j ava sourcefile:

44 1

45 13 fMonies. renoveElenent(old) ;

40 13 IMoney sum= old.add(aMoney) ;

47 13 if (aum.izaZero(])

43 a Eeturn;

49 a fMonies,addElement | 3um) ;

a0 B

31 14 public bhoolean equala(0bhject anlObject) |

32 14 if (i3Zero(]]

33] if (anObject instanceof IMoney)

a4] return [(IMoney)anObiject).izZerol] :
a3

a6 14 if (anObject instanceof MonevBag) {

a7 1z MoneyBag aMonevBag= (MonevBag)anOhject;
38 1z if [(aMoneyBag. fMonies.sizge() '= fMoniesz.size(])
249] return false:

a0

a1 12 for (Enumeration e= fMonies.elements(): e.hasMoreElements(): |
62 22 Money m= [(Money) e.nextElement():
63 22 if [!'aMoneyBad. contains (m))

B4 2 return false:

65 1

code not executed

Although line 52 of the above MoneyBag class has been executed 14 times, the method
i sZer o() hasnever evaluated to t r ue so it has not been fully tested. Therefore it, and the
following two lines, are highlighted. Thisis also the case with lines 58 and 59.

This highlighting feature makes it easy for you to see which parts of the code have not been
fully exercised by your tests so that you can then improve testing to provide better code
coverage.

If any of the lines shaded red contained a bug, they may never be detected because the
testsasthey aredon't test those parts of the code.

In the next step, we will enhance the JUnit tests to improve code coverage of the Money
library.
I mproving cover age

After having a look at the coverage report generated in the last step, you'll notice that
coverage is not 100%. Although not always possible, it is best to get as close to full coverage
as you can. Think of it this way: every line that isn't covered could contain a bug that will

Page 145

Clover 1.3.13 User Manual

otherwise make it into production. You should certainly aim to cover all of the code that
will be executed under normal oper ation of the software.

One method in the Money library that is not fully covered is the equal s() method in the
Money class (lines 40-42 as seen below). The first few lines of this method handle the special
case when the Money value is zero. The coverage report shows that the code to handle this
has not been covered by the tests. Line 40 has been executed 27 times but since it has never
evaluated to true it has not been fully covered and is therefore in red. It follows then that the
two successive lines have never been executed.

a2 1

33 341 public int amount() §

a4 341 return fhmount;

a5 1

30 415 public 3tring currencyi() |

a7 415 return fCurrency;

2B 1

39 27 public boolean edquals(Object anlObject] |

40 27 if (izsZerof()]

41 0 if (anObject instanceof IMonew)

42 0 return | (IMoney)anObiject).isZerol):

43 27 if (anObject instanceof Money) |

44 24 Money aMoney= (Money)anOhject;

45 24 return aloney. currency().equals (currency(]])
465 &6 amount()] == aMoney.amount();
47 1

43 2 return false:

49 !

lines not covered in money class

We can now improve the tests so that this section of code is covered. To do this, make the
following additions (shown in bold) to the MoneyTest . | ava file.

Declare the variable f QUSD:

public class MoneyTest extends Test Case {
private Mney f12CHF;
private Mney f14CHF;
private Mney f7USD;
private Mney f21USD;
private Mney fOUSD;

Initialisef OUSDintheset Up() method:

Page 146

Clover 1.3.13 User Manual

protected void setUp() {
f 12CHF = new Money(12, "CHF");
f 14CHF = new Money(14, "CHF");
f7USD = new Money(7, "USD');
f21USD = new Mney(21, "USD');
f OUSD = new Money(0, "USD');

Finally, the following test needs to be added:

public void test MoneyEqual sZero() {
assert True(! fOUSD. equal s(nul l'));
| Money equal Money = new Money(0, "CHF");
assert True(f OUSD. equal s(equal Money)) ;

After these amendments have been made, compile (by running ant wi th. cl over
code) and run the tests again (by running ant t est) and then re-generate the HTML
report (by runningant report. ht). You will seethat the Money class now has 100%
coverage.

7.1.3. Part 2 - Historical Reporting

I ntroduction

Part 2 of the Clover Tutorial focuses on the creation and interpretation of 'Historical' Clover
reports. Historical reports display graphical and numerical data relating to sets of coverage
data collected over time for the project. This tutorial covers the generation of a set of
historical data, interpretation of the information displayed in the Historical reports and
customisation of the reports for your particular reporting preferences.

In the first step, we'll edit the Ant build file to generate a History Point.

Creating history points

A history point is a snapshot of code coverage and metrics data for the project at a particular
point in time. By running tests with Clover over time and creating a series of history points, it
is possible to compare code coverage and metrics by viewing resultsin a single Clover report
and enabling you to track the development of your project. The generation of historical
reports is discussed in latersections. In the meantime, this section demonstrates how to set up
the relevant Ant target and run the command so that a history point can be created.

Adding a history point tar get
Add the following target to your bui | d. xm file:

Page 147

Clover 1.3.13 User Manual

<target name="record. point" depends="with.clover">
<cl over - hi storypoi nt historyDir="cl over _history"/>
</target>
When this target is run, a history point will be created with the timestamp value of the
coverage run.

The value of hi st oryDi r is the directory where the history points will be stored. You
should create this directory before executing this target.

By default Clover records the history point with a timestamp of the coverage run. If you wish to override the timestamp value
of a history point, you can add date and dateformat attributes to the task allowing you to reconstruct coverage history. See
documentation for the <clover-historypoint> task for details.

Recording a history point

Ensure that the source code has been instrumented and the tests run with the commands ant
wi th. cl over code andant test respectively.

Run the command ant r ecor d. poi nt . Output should be similar to the following:

$ ant record. point
Buil dfile: build.xn

w t h. cl over:

record. poi nt:
[cl over-historypoint] Clover Version 1.x, built on ..

[clover-historypoint] Merged results from 2 coverage recordi ngs.

[cl over-historypoint] Witing report to
"C:\tutorial\clover_history\clover-20030307111326. xm '

[cl over-historypoint] Done.

BU LD SUCCESSFUL

Total time: 2 seconds
In the next step we'll add more tests to improve coverage of the Money Library, recording
Clover history points along the way.

Generating historical data

In Part 1 of the tutorial we made additions to the testing suite to improve code coverage. In
order to show the historical reporter in use, we will now continue to add tests and
periodically record history points which will later be used as code coverage and metrics data
by the historical reporter.

Page 148

Clover 1.3.13 User Manual

The Money. | ava fileis at 100% coverage, however there are several sections of code that
remain untested in the MoneyBag. j ava file. These uncovered lines of code are shown
below in red. This section will focus on bringing the coverage of this class to 100% as well
as creating historical datain the form of history points.

47 13 if (sum.isZero(]]
48 a Eeturn;
49 a fMonies.addElenent (sum) ;
S0 1
31 14 public boolean equals(0bject anObject) |
32 14 if [(izZero())
53] if (an0Object instanceof IMoney)
54] return [[(IMoney)anObject].isEerol] ;
55
a6 14 if (anlObject instanceof MoneyBag) |
57 12 MonevBag aMonevBag= (MoneyBag)anObject:
28 12 if [(aMoneyEag. fMoniez.zize() '= fMoniesz.zize())
a9] return falze;
a0
al 12 for (Emumeration e= fMonies.elements(); e.hasMoreElementz():) {
nz 22 Money m= (Money) e.nextElement():
63 22 if [!aMoneyBag. contains(m))
4 2 return false:
money not covered 1
117 4 public IMoney subtract|IMoney m) |
118 4 return add(m.negate(l):
119 1
120] public String toString()]
121] StringBuffer buffer = new 3tringBuffer():
122 Q buffer. append | 1
123] for (Enumeration e= fMonies.elements(); e.hasMoreElements(]: |
124 a butffer.append(e.nextElenchnt ()] ;
125 a buffer. append | 1:
126 a return buffer. to3tringi) ;
127 3
128 12 public woid appendTo (MoneyBag m) |
129 12 u.appendBag(thisz) ;
120 }
131 }

money not covered 2

Open the source file MoneyTest . j ava in your favourite text editor and make the
following additions shown in bold:

Declare the variablesf OCHF and f MB3:

Page 149

Clover 1.3.13 User Manual

public class MneyTest extends Test Case {
private Mney f12CHF;
private Mney f 14CHF;
private Mney f7USD;
private Mney f21USD;
private Money fOUSD,
private Mney fOCHF;

private | Mney fNMB1;
private | Mney fNMB2;
private | Mney fMB3;

Initialisef OCHF and f MB3 intheset Up() method:

protected void setUp() {
f12CHF = new Mney(12, "CHF");
f14CHF = new Money(14, "CHF");
f7USD = new Money(7, "USD');
f21USD = new Money(21, "USD");
fOUSD = new Money(0, "USD');

f OCHF new Money(0, "CHF");

f MBL = MoneyBag. creat e(f12CHF, f7USD);
fMB2 = MoneyBag. creat e(f14CHF, f21USD);
f MB3 = MoneyBag. creat e(f OCHF, fOUSD);

Add the following test:

public void test MoneyBagEqual sZer o() {
assert True(!fMB3. equal s(null));
| Money expected = MoneyBag. creat e(new Money(0, "CHF"),
new Money(0, "USD'));
assert True(f MB3. equal s(expected));

}
After making the above changes, reinstrument and test your code by running ant
wi th. cl over code and ant test respectively. Then record a new history point by
running ant record. poi nt. By recording a history point now, Clover will capture the
new state of code coverage and metrics for comparison with past or future runs.

Add the following tests to bring the coverage of the Money project to 100%:

public void testToString()({
String expected="{[12 CHF][7 USD]}";
assert Equal s(expected, fMBl.toString());

}

public void testVectorSize(){
| Money ot her = MoneyBag. creat e(new Money(2, "CHF"),

Page 150

Clover 1.3.13 User Manual

new Money(2, "USD'));
assert True(! ot her. equal s(fMB3));
}

Once again, reinstrument your code, test and record a new history point.

We have now created a series of history points for the Money library. The next section
discusses how to generate a Clover historical report which will display the historical data that
has been collected.

Creating historical reports

Now that we have recorded severa history points, the next step is to add a target to the build
filewhich will call the historical reporter and generate a historical report.

Add a historical report target
Add the following target to bui | d. xni :

<target name="hist.report" depends="with.clover">
<cl over-report>
<hi storical outfile="historical.pdf"
hi storyDi r="cl over history"/>
</cl over-report>
</target>
The hi st. report target is similar to the report. ht m target defined in Part 1. The
main differences are that the nested element specifies <hi st ori cal > rather than

<cur r ent > and there is no specification of the output format asht m .

The historical reporter needs to be able to find the coverage history filesin order to create the
report so the hi st or yDi r value must be the same as the hi st or yDi r defined for the
history points. The format of the report can be either PDF or HTML as specified by the
<f or mat > element. The <f or mat > element is optional and is not included in the example
above. When the <f or mat > element is omitted, a PDF report is produced by default.
Depending on the chosen format, the out f i | e value may represent a single file as in the
case of the PDF format, or the name of adirectory (in the case of the HTML format).

Generating a historical report

Create a historical report by using the command ant hi st. report . Output should be
similar to the following:

$ ant hist.report
Bui l dfile: build.xm

Page 151

Clover 1.3.13 User Manual

wi t h.cl over:

hi st.report:

[clover-report] Clover Version 1.x, built on ..

[clover-report] Witing report to 'C\tutorial\historical.pdf
[clover-report] Merged results from 2 coverage recordings.
[clover-report] Done. Processed 1 packages.

[clover-report] Witing historical report to 'C \tutorial\historical.pdf
[clover-report] Read 3 history points.

[cl over-report] Done.

BUI LD SUCCESSFUL
Total tinme: 8 seconds

The report can now be viewed by opening the filetut ori al \ hi storical . pdf ina
PDF viewer such as Adobe Acrobat Reader. We'll ook at how to interpret this report in the
next section.

Interpreting historical reports

We will now look at interpreting the report that you generated in the previous step by
enabling the report in an appropriate PDF viewer. When you view the report you should see a
picture similar to the screenshot below, although it is likely that the the graphs that you
produce will contain different values.

Like the 'current’ report, the historical report begins with a header containing relevant project
information. This includes the report title, the project metrics and the period for which
history points are included in the report. Below this header is the Project Overview Chart
which shows the branch, statement, method and total coverage percentages for the project for
the most recent history point included in the report.

The 'Coverage over time' graph shows the percentage values of branch, statement, method
and total coverage for each history point and plots them against time in an easy-to-read chart.

Page 152

http://www.adobe.com

Clover 1.3.13 User Manual

Historical coverage report - Money Demo Coverage project stats: LOC: 46 Metheds: 56
From: Mon Spr 28 2003 12:54:03 EST
NCLOC: 312 cl : 4
To: Wed May 14 2003 09:00: 28 EST - . asses
nes:

Caonditionals Statements Methodsz TOTAL

Project ey

Coverage over time

1007
31

904

-l

801

704

G0

50

Coverage (%)

401

301

201

101

30-Apr-2003 04-May-2003 08-May-2003 12-May-2003

Branches =— Statements Methods v Total

historical chart overview and coverage

The 'Metrics over time' graph shows the project statistics for each history point plotted
against time. It is therefore possible to observe changes in metrics such as the number of
methods. In the example below, the number of methods can be seen shown in green.

Page 153

Clover 1.3.13 User Manual

Metrics over time

450+
4 s
105{ o —

360+

3154 -

2704

2254

1804

135+

901

451

30-Apr-2003 04-May-2003 08-May-2003 12-May-2003

Classes —=— MNCLOC e LOC Methods

Movers over the last 15 hours (Range: 5, Threshald: +/-1%6)

default-pkq.Money 1006 (100%)

Ma classes have lost coverage more than threshald [-1%%)

metrics and movers

The final section, 'Movers, displays classes that have increased or decreased in coverage by
more than a specified percentage point threshold over a particular time interval, the default
being 1 percentage point over the two latest history points. In this case there have not been
any classes which have lost more than 1 percentage point coverage, hence the only item
displayed here is the Money package which has gained 10.6 percentage points coverage over
the two latest history points.

The next section of this tutorial will discuss how you can customise many aspects of the

Page 154

Clover 1.3.13 User Manual

historical report.

Customising historical reports

In the previous sections of this tutorial we've looked at how to create and interpret a basic
historical report. In addition to basic reporting, the historical reporter is highly configurable
and this section will detail some of the options you can use. For a full list of the report
configuration options see the documentation for the <cl over - r epor t > task.

Changing output format

The default historical report type is PDF although an html report can also be produced. To
create an html report, add a nested <f or mat > element with type specified asht ml to your
<cl over-report > element. Try adding the following target to your bui | d. xm file
and executing the command ant hi st.report. htn :

<target name="hist.report.htm " depends="wi th.cl over">
<cl over-report>
<hi storical outfile="clover_htm /historical"
title="My Project"
hi storyDi r="cl over _hi story">
<format type="htm"/>
</ historical >
</cl over-report>
</target>

A custom title can also be displayed for your report by using the ti t| e attribute in the
<hi st ori cal > element as above.

Chart Selection

The historical reporter alows you to specify which charts to include in your report and also
allows you to configure further options in the charts themselves.

The default reporting mode is to include all four report elements. <overvi ew>,

<coverage>, <netrics> and<nover s>. But to include some and not the othersis a
simple matter of nesting the desired elements within the <hi st ori cal > element. Try
adding the following target to your bui | d. xm file as an example:

<target name="hist.report.coverage" depends="with.clover">
<cl over-report>
<hi storical outfile="histCoverage. pdf"
title="My Project"
hi storyDi r="cl over _history">
<overvi ew >
<cover age/ >

Page 155

Clover 1.3.13 User Manual

</ historical >
</cl over-report>
</target>
The above code will produce a historical PDF report with the title ‘My Project’ which
includes only two sections: the 'Overview' and the 'Coverage over time' charts.

Chart Configuration

The 'Coverage over time' and 'Metrics over time' charts also allow you to choose which
metrics information should be included. The default elements for the coverage chart are
branches, statenents, nethods andtotal, while the default elements for the
metrics chart are | oc, ncl oc, nethods and cl asses. By using the i ncl ude
attribute you can specify the required configuration:

<target nanme="hist.report.select" depends="wi th.clover">
<cl over-report>
<hi storical outfile="histSelect.pdf"
title="My Project"
hi storyDi r="cl over _hi story">
<cover age include="total"/>
<netrics include="net hods, packages"/>
</ hi storical >
</ cl over-report>
</target>
This will produce a PDF file with the filename ‘histSelect.pdf' with two sections: the
'‘Coverage over time' chart with total coverage information; and the 'Metrics over time' chart
with method and package information. Y ou can also specify whether or not a chart uses alog

scale by adding thel ogscal e attribute:
<nmetrics include="net hods, packages" |ogscal e="fal se"/>

'Movers Configuration

The 'Movers section of the historical report shows you the classes whose coverage has
changed the most recently. Thisis useful for spotting classes that have had sudden changesin
coverage, perhaps the unintended result of changes to the unit test suite.

The 'Movers chart alows you to specify the threshold of point change a class must satisfy,
the maximum number of gainers and losers to display and the period across which the gains
and losses are calculated. Add the following target to your bui | d. xm file as an example
of thisfeaturein use:

<target name="hist.report. nmovers" depends="wi th. cl over">
<cl over-report>
<hi storical outfile="histMvers. pdf"

Page 156

Clover 1.3.13 User Manual

title="My Project"
hi storyDi r="cl over _hi story">
<novers threshol d="5% range="20" interval ="2w'/>
</ historical >
</cl over-report>
</target>

In this case, the configuration values selected state that classes must have a change in
coverage of at least 5 percentage points to be included in the chart, a maximum of 20 gainers
and 20 losers can be displayed, and the initial valuation point for class coverage is 2 weeks
prior to the most recent history point. Should there be greater than 20 gainers in this period,
then the classes with the biggest percentage point gain will be displayed, and the same for the
losers.

See Interval Format for details on the syntax for specifying interval values.

The next section of this tutorial will discuss how you can automate the coverage checking of
your project.

7.1.4. Part 3 - Advanced Features

I ntroduction

This section looks a some advanced features of Clover.
e Automating coverage checking

Automating cover age checking

The <clover-check> task provides a useful mechanism for automating your coverage
checking and gives you the option of failing your build if the specified coverage percentage
isnot met. It iseasily integrated into your build system.

Adding coverage checking

Ensure that you have current Clover coverage data so that you can check the coverage
percentage for your project. Clover coverage data is generated as described in Part 1 of the
Tutorial.

Add the <cl over - check> task to your build by specifying a target similar to the
following:

<target name="cl over.check" depends="with.clover">
<cl over-check target="80%/>
</target>

This configuration sets an overall project target of 80% coverage

Page 157

Clover 1.3.13 User Manual

Usethecommand ant cl over. check to runthe check. If your test coverage satisfies the
target coverage percentage, output will be similar to the following:

$ ant cl over. check
Buil dfile: build.xni

w t h. cl over:

cl over. check:
[clover-check] Merged results from 1 coverage recording.
[cl over-check] Coverage check PASSED

BUI LD SUCCESSFUL
Total tinme: 2 seconds

If your coverage percentage does not reach the coverage target, you'll get something like this
instead:

$ ant cl over. check
Buil dfile: build.xn

wi t h. cl over:

cl over. check:
[clover-check] Merged results from1 coverage recording.
[cl over-check] Coverage check FAILED
[cl over-check] The follow ng coverage targets were not nmnet:
[cl over-check] Overall coverage of 74%did not neet target of 80%

BU LD SUCCESSFUL

Total time: 2 seconds
In order to try this out on the Money Library used in this tutorial, try commenting out some
of the testsin the MoneyTest . j ava fileto create a situation where the code coverage does
not reach 80%.

Failing the build if coverage criteria not met

In the above situation where the target is not met, after the message has been written to
output, the build for the specified target will continue as normal.

Adding the hal t OnFai | ur e attribute allows you to specify whether or not you want the
build to fall automatically if the coverage target is not met. The default for
hal t OnFai | ureisf al se.

<target name="cl over.check. haltonfail" depends="with.clover">
<cl over-check target="80% haltOnFailure="true"/>
</target>

Page 158

Clover 1.3.13 User Manual

The fail ureProperty attribute of the <cl over - check> task allows you to set a
specified property if the target of the project is not met:

<target name="cl over. check. set property" depends="with.cl over">
<cl over-check target="80% failureProperty="coverageFailed"/>

</target>
In this case, if the coverage does not reach 80%, the property cover ageFai | ed will have
its value set to the coverage summary message "Overall coverage of *% did not meet target
of 80%". This allows you to check the value of this property in other Ant targets and manage
the outcome accordingly. For an example on managing the resulting actions for a project
which does not meet its coverage target see Using Clover in Automated Builds.

Adding Package-level coverage criteria

The <clover-check> task also allows you to specify the desired percentage covered for
different packages, which comesin useful if you have certain packages that have more or less
stringent coverage requirements than the rest of the project. This is done by adding nested
'package’ elements like the following:

<target name="cl over. check. packages" depends="wi th. cl over">
<cl over-check target="80% >
<package name="com cl over. exanpl e. one" target="70%/>
<package nanme="com cl over. exanpl e.two" target="40%/>
</ cl over - check>
</target>

Context filtering

The <clover-check> task allows you to prescribe afilter that excludes coverage from certain
block-types from overall coverage calculations. See Coverage Contexts for more
information. Thef i | t er attribute accepts a comma separated list of the contexts to exclude
from coverage calculations.

<target nane="cl over. check. nocat ch" depends "with.clover">
<cl over-check target="80% filter="catch"/>
</target>
This will run clover coverage percentage check as normal but will calculate coverage with
omission of all 'catch’ blocks.

Page 159

Clover 1.3.13 User Manual

8. Miscellaneous

8.1. Swing Viewer

8.1.1. Overview

The Swing Viewer is a standalone coverage viewer that alows you to browse coverage

results and generate coverage reports.

Launching the viewer from Ant

Add the following target to your build file:

<target name="cl over.vi ew' depends="with.cl over">
<cl over-vi ew >
</target>

The viewer can then be launched with ant cl over . vi ew.

This assumes you have added awi t h. cl over target to your build that initialises Clover. See the for more details.

L aunching the viewer from the Command Line

To launch the Swing viewer from the command line:

java com cenqua. cl over.reporters.jfc.Viewer <initstring>

The swing viewer will appear in a new frame which will look like the following (sections of

thisimage are displayed in greater detail below):

Page 160

Clover 1.3.13 User Manual

10l
[project Chbrendanijboss-allservensroimainorgijbosstejEnterprise Context java
¢ Clorg (41.2%) I€/| € || % ||| methods [statements [condittionals
@ O hs (0%)
@ O jboss 42%) Line 224: expression evaluated to true 19 times, false 0 times.
B-E admin (0%) o [#] . throw new EJBException("Deprecated™): B
© 3 mo (30.8%) o
KEJEW(W'E%) 219 A**% Get the Principal for the current caller. This method
hia (25.6%) 220 cannot return null according to the ejb-spec.
@ T tm (57.9%) 294 Ny
@[jms (53.6%) 222 19 public Principal getCallerPrincipalf)
& [metadata (72.2%) 299 ¢
? [ejb (59.5%) 224 19 if(beanPrincipal == null) =
© [T plugins (58.3%) 225 { -
D Cachekey (30%) 226 19 FealwMapping rm = con.getRealnMapping();
D ContainerPlugin (- 227 19 if(principal !'= mall)
[EnterpriseConext (87.2%) 23 L
DC {ainerFactory DanlovLish 2120 229 18 if(Em !'= mall)
ontainerFactory. DeployListener (33.3%) 230 18 beanPrincipal = rm.getPrincipal {principal);
[Interceptor ¢-) 234 else
D StatefulSessionEnterpriseContext (69.6%) 232 (#] beanPrincipal = principal;
[1| IC 233 }
- — &) 234 1 elze if{ rm '= null)
= ﬂ‘ MG || [fiter... | {;13 fn.!f::’fmrg, 2335 { // Let the RealmMapping map the null principal
236 a beanPrincipal = rm.getPrincipal (principal);
~Coverage — 237 i
235 elae
239 { // Check for a unauthenticated principal walue
Methods: 16717 84.1% I 240 1 ApplicationMetabata appMetaData = con.getBeanMetaDatal
Statements: 61770 871 % I — 244 1 String name = appMetaData.getUnauthenticatedPrincipalf
Conditionals: 32738 84.2% I 242 i if([name !'= null)
TOTAL: 87.2% I— 243 T bheanPrincipal = new SimplePrincipal (name);
244 i
B 245 1
-Metrics —
246 19 if{ beanPrincipal == null)
247 Q throw new IllegalStateException("No security context set”
Lines of Code: 131 Classes: 245 19 return beanPrincipal;
MG Lines of Code: 13 Files: = 249 i
hethods: 17 Packages: - 250
public EJEHome getEJBHone ()
{[E [r]

swing viewer screenshot

Package View

In the top left hand corner you will see the Project Package View which gives you a quick
snapshot of the coverage percentage of each package. The two buttons on the left below the
Package View alow you to choose between a nested view of the packages or aflat view. The
button on the left will display the packages in a hierachical structure whereas the button to
the right will display each package separately.

Page 161

Clover 1.3.13 User Manual

[project -
® [org (41.2%)
@ 7 hs (0%)
@ [jhoss (42%) o
@ 7 adrmin (0% .
@ [mig (30.8%)
@ 7 jetty (40.2%)
@ [ha (25.6%)
@ T trr (57.9%)
@ 7 jms (53.6%)
@] metadata (78.2%)
@ [ejb (59.5%)
@ 7 plugins (58.3%)
[Cachekey (30%:)
|j| ContainerPlugin (-
[EnterpriseContext (87.2%)
|j| izontainerFactory.DeployListener (33.3%)

|j| [nterceptar (-3

|j| statefulsSessionEnterpriseContext (6Y.6%)
A | G | | >

"= ==|| refresh [filter... E 3 ﬂﬂ?&l‘*
e B COVEragE

JRN

project package view

The 'refresh’ button will reread coverage data and will update the display accordingly. This
allows you to change, re-compile and test code while the swing viewer is running and then
instantly see the new code coverage results.

Clicking on the filter button opens up a new frame that allows you to filter the displayed
coverage. The context filter allows you to select certain blocks to ignore when calculating
coverage, and the coverage filter allows you to specify a level of coverage that needs to be
achieved before the class is displayed. Once the filtering has been selected, click 'Apply' to

Page 162

Clover 1.3.13 User Manual

see the results. 'Reset’ will return to the default settings, and 'Cancel’ will leave the settings as
they were.

Double-clicking on a package or selecting the icon to the left of the package name will
display al the files that exist within that package. These files can then be selected and thefile
will appear in the window to the right for closer examination (see Code View section below).

Coverage and Metrics

Depending on the current selection in the Package View, the relevant coverage details and
statistics will be displayed in the two sections below the project packages.

~Coverage

Methods: 16117
Statements: 61 7 70
Conditionals: 32 7 38

TOTAL:
~Metrics
Lines of Cade: 331 Classes: -
MG Lines of Caode: 313 Files: -
mMethods: 17 Fackages: -

coverage and metrics details

The coverage details show the method, statement and conditional coverage. The statistics in
the bottom left give the metrics of the selection in the project package section and provide
details such as the number of lines of code, number of classes, etc.

Code View
The window on the right of the Swing Viewer (shown below), which displays your selected

Page 163

Clover 1.3.13 User Manual

file, allows you to see exactly which sections of your code remain uncovered, much like the
HTML Reporter. The name and location of the file are shown at the top of this window, and
clicking on the left and right arrows below this alow you to cycle through the coverage of
one file. The check boxes beside this can be used to omit or include method, statement or

conditional coverage.

Page 164

Clover 1.3.13 User Manual

Chhrendanijboss-allsernensrcimainaorgijhosstej bl EnterpriseContext.java

|1 <€ || 2 || 2] v methods [statements v conditionals

Line 224; expression evaluated to true 19 times, false 0 times.
e] throw new EJBEXception("Deprecated™) ; -
297 1 |
218
299 #%% Get the Principal for the current caller. Thiz method
220 cannot return null according to the ejb-spec.
224 *
222 19 public Principal getCallerPrincipali)
223 i

e 224 9 if [heanPrincipal == mull)
225 I
226 9 RealnMapping rm = coh.getRealnMapping():
227 9 if [principal '= null)
225 {
229 il iff rm !'= null |
230 il beanPrincipal = rm.getPrincipal (principal);
237 else
232] bheanPrincipal = principal ;
233 !
234 il else if[rm '= rmll |
235 { // Let the RealuMapping map the null principal
236 a beanPrincipal = rm.getPrincipal iprincipal) ;
237 1
238 elae
239 { // Check for a unauthenticated principal walue
240 7 ApplicationMetalbata appMetalata = con. getBeanMetaDatal(
247 'l String name = appMetaData.getlhauthenticatedPrincipal |
242 'l if [name !'= null |
243 il heanPrincipal = new SinmplePrincipal (hame) :
244 1
245 B
246 19 if(beanPrincipal == null]
247] throw new IllegalitateException(™No Security context 3et™
248 9 return heanPrincipal:
249 1
230
287 il public EJBHome getEJBHome () |

|

Page 165

Clover 1.3.13 User Manual

class code view

The non-comment lines of code have their numbers highlighted in blue and beside this is the
number of times aline has been executed. This second number is highlighted in red if the line
has never been executed, and blue otherwise.

The 'quick jump' bar on the furthest right of this window highlights lines that have not been
covered by the testing. Clicking on the dashes beside these lines allows you to instantly skip
to the uncovered sections of code.

8.1.2. Generating Reports

The Swing Viewer can be used for generating other types of reports.

To generate reports, click on 'File' and select 'Generate other reports. This will bring up a
new frame allowing you to choose which sort of report you want to generate and aso
configure other options relevant to specific reports.

Generate Reports El

[XML | PDF | HTML |
Output File:

i Settingswser! vy DocumentsicloverREeport.xml

Report title iy Clover Report

'¥| Include line information

Filter...

Generate Close

report generation options

For al three report types that you can generate, you must specify an output path. For
XML/PDF, thisisafile, and for html, thisis adirectory. You can also add areport title if you
wish. By clicking the 'Filter' button you can again select specific blocks to exclude when
generating the report.

Page 166

Clover 1.3.13 User Manual

The XML report gives you the option of including line information which details the line
number, the line type (method/statement/conditional) and the execution count (in the case of
aconditional, the true count and the fal se count).

When generating the HTML report you can select whether or not you want the source files to
be shown, including coverage information, by checking the 'Show source' check box. You
can also choose to sort the classes alphabetically, by ascending coverage, or descending
coverage.

To generate the report ssmply click ‘Generate’ and a pop-up will be displayed saying the type
of report generated and the path of that report. If, for instance, you select an invalid path, a
relevant error message will be displayed detailing the problem.

success x|

ﬁﬁ XML report generated to:
= D:Documents and Settings Kim'My DocumentsicloverReport.xmil

OK

successful generation

Y ou can now view the generated report by opening it in arelevant application.

8.2. Interval Format

Theinterval typeis used to specify a period of time. It consists of avalue and a unit specifier,
eg. "3 days'. The Interval type is very flexible about how it interprets the time unit. In
general, the first letter is sufficient to indicate the interval unit. For example, the previous
example could be written as "3 d". The time ranges supported are specified in the following
table

Unit specifier Abbrev. Example Values
second S 3 seconds 20s
minute m 5 minute 7 min, 11m
hour h 4 hours 2h
day d 7 days 365d
week w 4 weeks 10w

Page 167

Clover 1.3.13 User Manual

month mo 5.6 months 24mo
year y 100 years 5y

If no time unit is provided the default unit of "days" is used. A numeric value must always be
provided or an exception will be thrown. Numeric values may be fractional (eg. 5.6).

Due to the variable lengths of months and years, approximations are used for these values within Clover. A month is
considered to be 30.346 days and ayear is considered to be 365.232 days. All other units are exact.

8.3. Frequently Asked Questions

8.3.1. Questions

1. General
e Can't find an answer here?
» What is Code Coverage Analysis?
* What are the limitations of Code Coverage?

Where did Clover originaly come from?
Why the name "Clover"?
2. Technical Background
Does Clover depend on JUnit?
Does Clover work with JUnit4 and TestNG?
Why does Clover use Source Code | nstrumentation?
Will Clover integrate with my IDE?
Does Clover integrate with Maven?
What 3rd Party libraries does Clover utilise?
How are the Clover coverage percentages calculated?
Does Clover support the new language featuresin JIDK1.5?
3. Troubleshooting
* Two questions to ask yourself first when troubleshooting Clover:
* When using Clover from Ant, why do | get "Compiler Adapter
'or g. apache. t ool s. ant . t askdef s. O over Conpi | er Adapt er ' can't be
found." or similar?
e Whenusing Clover, why do | get aj ava. | ang. Nod assDef FoundEr r or
when | run my code?
* When generating some report types on my unix server with no XServer, | get an
exception "Can't connect to X11 server” or similar.
Why do | get 0% coverage when | run my tests and then areporter from the same
instance of Ant?

Page 168

Clover 1.3.13 User Manual

 Whydolgetanj ava. | ang. Qut Of Menor yEr r or when compiling with Clover
turned on?

» For some statements in my code Clover reports "No Coverage information gathered
for this expression”. What does that mean?

* Why does Clover instrument classes | have excluded using the <exclude> element of
the <clover-setup> task?

* |I'mtrying to get a coverage report mailed to the team as shown in your example, but |
keep getting "[mail] Failed to send email”. How do | fix this?

8.3.2. Answers
1. General

1.1. Can't find an answer here?

Try our Online Forums, or contact us directly.

1.2. What is Code Coverage Analysis?

Code Coverage Analysis is the process of discovering code within a program that is not
being exercised by test cases. This information can then be used to improve the test suite,
either by adding tests or modifying existing tests to increase coverage.

Code Coverage Analysis shines a light on the quality of your unit testing. It enables
developers to quickly and easily improve the quality of their unit tests which ultimately leads
to improved quality of the software under devel opment.

A good introduction to the various types of Code Coverage Analysis can be found here.

1.3. What arethelimitations of Code Coverage?

Code Coverage is not a "silver bullet" of software quality, and 100% coverage is no
guarantee of a bug free application. You can infer a certain level of quality in your tests
based on their coverage, but you still need to be writing meaningful tests.

As with any metric, developers and project management should be careful not to
over-emphasize coverage, because this can drive developers to write unit tests that just
increase coverage, at the cost of actually testing the application meaningfully.

1.4. Wheredid Clover originally come from?

Clover was originally developed at Cenqua as an internal tool to support development of

Page 169

http://www.cenqua.com/forums/
mailto:clover-support@cenqua.com
http://www.bullseye.com/coverage.html

Clover 1.3.13 User Manual

large J2EE applications. Existing tools were found to be too cumbersome to integrate with
complex build systems and often required specialized development and/or runtime
environments that were not compatible with target J2EE Containers. Another feature that we
found lacking in other tools was simple, source-level coverage reporting - the kind that is
most useful to developers.

1.5. Why thename" Clover" ?
Clover is actually a shortened version of the tool's original name, "Cover Lover"”, from the
nick name that the tool's author gained while writing Clover ("Mr Cover Lover").

2. Technical Background

2.1. Does Clover depend on JUnit?

Clover has no dependence on JUnit. We mention it frequently in our documentation only
because of JUnit's widespread use in the Java dev community. You can certainly instrument
your code and run it however you like; Clover will still record coverage which can then be
used to generate reports.

2.2. Does Clover work with JUnit4 and TestNG?
Clover isfully compatible with JUnit4 and TestNG.

2.3. Why does Clover use Sour ce Code I nstrumentation?

Source code instrumentation is the most powerful, flexible and accurate way to provide code
coverage analysis. The following table compares different methods of obtaining code
coverage and their relative benefits:

Possible feature JVMDI/PI Bytecode Source code
instrumentation instrumentation

gathers method | yes yes yes

coverage

gathers statement | line only indirectly yes

coverage

gathers branch indirectly indirectly yes

coverage

can work without yes yes no

source

Page 170

Clover 1.3.13 User Manual

requires separate build ' no no yes
requires specialized ' yes yes no
Runtime

gathers source metrics | no no yes
view coverage data | not accurate not accurate yes
inline with source

source level directives | no no yes

to control coverage

gathering

control which entities | limited limited yes

are reported on

compilation time no impact variable variable
runtime performace high impact variable variable
Container friendly no no yes

2.4. Will Clover integrate with my IDE?
Clover provides integrated plugins for IntelliJ IDEA 4.x and 5.x, NetBeans, and Eclipse,
JBuilder and JDeveloper. Clover should also work happily with any IDE that provides
integration with the Ant build tool.

2.5. Does Clover integrate with Maven?
There is a Clover Plugin for Maven and Maven2 - both are independent open source
developments supported by Cenqua. See the Maven and Maven2 websites for details.

2.6. What 3rd Party libraries does Clover utilise?
Clover makes use of the following excellent 3rd party libraries:

Jakarta Velocity 1.2 Templating engine used for Html report

generation.
Antlr 2.7.1 A public domain parser generator.
iText 0.96 Library for generating PDF documents.
Jakarta Ant The Ant build system.

Page 171

Clover 1.3.13 User Manual

To prevent library version mismatches, all of these libraries have been obfuscated and/or repackaged and included in the clover
jar. We do thisto prevent pain for users that may use different versions of these librariesin their projects.

2.7. How arethe Clover coverage per centages calculated?

The "total" coverage percentage of a class (or file, package, project) is provided as a quick
guide to how well the classis covered - and to allow ranking of classes. The Total Percentage
Coverage (TPC) is calculated using the formula:

TPC = (CT + CF + SC+ MO)/(2*C + S + M

wher e

CT - conditionals that evaluated to "true" at |east once
CF - conditionals that evaluated to "fal se" at | east once
SC - statenents cover ed

MC - net hods entered

C - total number of conditionals
S - total nunber of statenents
M - total nunber of methods

2.8. Does Clover support the new language featuresin JDK 1.5?
Clover fully supports all JDK 1.5 language features.

3. Troubleshooting

3.1. Two questionsto ask your self first when troubleshooting Clover:

1. Does my code compile and run as expected without Clover ?

Y ou need to ensure that your project compiles and runs as expected before attempting to
use Clover.

2. Am | usingthelatest version of Clover?
The latest version of Clover incorporates many bugfixes and improvements.

If the answers in this section don't fix the problem you are encountering, please don't hesitate
to contact us.

3.2. When using Clover from Ant, why do | get "Compiler Adapter
'or g.apache.tools.ant.taskdefs.Clover Compiler Adapter' can't be found.” or similar?

You need to install Clover in Ant's classpath. Depending on what version of Ant you are

Page 172

mailto:clover-support@cenqua.com

Clover 1.3.13 User Manual

using, there are several optionsto do this. See Installation Options

3.3. When using Clover, why do | get a java.lang.NoClassDefFoundError when | run
my code?

This probably indicates that you do not have clover.jar in your runtime classpath. See
Classpath Issues

3.4. When generating some report types on my unix server with no XServer, | get an
exception " Can't connect to X11 server™ or similar.

Thisis alimitation of the Java implementation on Unix. Prior to JDK 1.4, the java graphics
toolkit (AWT) requires the presence of an XServer, even in the case where no "on-screen”
graphics are rendered. With JDK14, you can set the System property
java.awt.headless=true to avoid this problem. When running Ant, this is most easily
achieved by using the ANT_OPTS environment variable:

export ANT_OPTS=-Dj ava. awm . headl ess=t rue

When running your code outside Ant, you may also need to set this system property.

With ealier JDKs, you need to wuse a virtua X Sever. See
http://java.sun.com/products/java-media/2D/forDevel opers/javadfag.html#xvib.

3.5.Why do | get 0% coveragewhen | run my testsand then areporter from the same
instance of Ant?

This occurs because Clover hasn't had a chance to flush coverage data out to disk. By default
Clover flushes coverage data only at VM shutdown or when explicitly directed to (using a
inline directive). The simplest thing to do is to use the fork="true" attribute when running
your tests. The tests will be then run in their own JVM, and the coverage datawill be flushed
when the that VM exits. Alternatively, you can use interval-based flushing by changing the

Flush Policy.

3.6. Why do | get an java.lang.OutOfMemoryError when compiling with Clover
turned on?

Instrumenting with Clover increases the amount of memory that the compiler requires in
order to compile. To solve this problem, you need to give the compiler more memory.
Increasing the memory available to the compiler depends on how you are launching the
compiler:

If you are using the "in-process’ compiler (the <javac> task with the "fork" attribute set to
false), you will need to give Ant itself more memory to play with. To do this, use the

Page 173

Clover 1.3.13 User Manual

ANT_OPTS environment variable to set the heap size of the VM used to run Ant:
export ANT_OPTS=- Xmx256m

If you are using an external compiler (the <javac> task with the "fork" attribute set to true),
you can set the memorylnitial Size and memoryMaximumSize attributes of the javac task:

<javac srcdir="${src}"
destdi r="%{bui | d}"
fork="true"
menorylnitial Si ze="128n'
menor yMaxi nunsi ze="256n"/ >

3.7. For some statements in my code Clover reports "No Coverage information
gathered for thisexpression”. What does that mean?

Clover will not measure coverage of a conditional expression if it contains an assignment
operator. In practice we have found this only a minor limitation. To understand why Clover
has this limitation, consider the following (very contrived) code fragment:

1 public int foo(int i) {

2 int j;

3 it (() =1) ==1) {

4 return |

5

6 return O

7

at (2) the variable "j" is declared but not initialised.
at (3) "j" is assigned to inside the expression

at (4) "j" is referenced.

During compilation, most compilers can inspect the logic of the conditional at (3) to
determine that "j" will be initialised by the time it is referenced (4), since evaluating the
expression (3) will always result in "j" being given a value. So the code will compile. But
Clover has to rewrite the conditional at (3) so that it can measure coverage, and the rewritten
version makesit harder for compilersto infer the state of "j" when it isreferenced at (4). This
means that the instrumented version may not compile. For this reason, Clover scans
conditionals for assignment. If it one is detected, the conditional is not instrumented.

3.8. Why does Clover instrument classes | have excluded using the <exclude> element
of the <clover-setup> task?

There are two possible causes.

1. Cascading build files:

Clover uses Ant patternsets to manage the includes and excludes specified in the
clover-setup task. By default Ant does not pass these patternsets to the sub-builds. If you

Page 174

Clover 1.3.13 User Manual

are using a master-build/sub-build arrangement, with compilation occuring in the
sub-builds and <clover-setup> done in the master-build, you will need to explicitly pass
these patternsets as references.

<ant ...>
<reference refid="clover.files"/>
<reference refid="cl over.useclass.files"/>
</ ant >

2. Excluded files are still registered in the Clover database:
Clover's database is built incrementally, and this can mean that files that are now
excluded but were previously included are still reported on. The simple workaround is to
delete the Clover database whenever you change the clover includes or excludes. Thisis
fixed in Clover 1.2.

3.9. I'm trying to get a coverage report mailed to the team as shown in your example,
but | keep getting " [mail] Failed to send email”. How do | fix this?

The Ant <mail> task depends on external libraries that are not included in the Ant
distribution. Y ou need to install the following jarsin ANT_HOME/lib, both freely available
from Sun:

1. malil.jar - from the JavaMail API (http://java.sun.com/products/javamail/)
2. activation.jar - from the JavaBeans Activation Framework
(http://java.sun.com/products/javabeans/jaf/index.jsp)

Y ou should also check the details of your local SMTP server with your SysAdmin. It may
help to specify these details directly to the <mail> task:

<mai | mail host="snt p. nyi sp. com' mai |l port="25" from="buil d@xanpl e. cont
tolist="teamaxanpl e. conf subject="coverage criteria not net"
nessage="${coverageFai |l ed}" fil es="coverage_sumary. pdf"/>

Page 175

	1 Introduction
	1.1 Starting Points
	1.1.1 System Requirements
	1.1.2 Installing your license file
	1.1.3 Acknowledgements

	2 Code Coverage
	2.1 Code Coverage
	2.1.1 What is Code Coverage?
	2.1.2 Why Measure Code Coverage?
	2.1.3 How Code Coverage Works
	2.1.4 Code Coverage with Clover
	2.1.4.1 Types of Coverage measured

	3 Clover with Ant
	3.1 Quick Start Guide for Ant
	3.1.1 Install Clover
	3.1.2 Add Clover targets
	3.1.3 Compile and run with Clover
	3.1.4 Generate a Coverage Report

	3.2 Installation Options
	3.2.1 Ant 1.4.1, 1.5.x
	3.2.2 Ant 1.6.x
	3.2.2.1 Installing Clover locally for a single user
	3.2.2.2 Installing Clover at an arbitary location

	3.2.3 Adding Clover to Ant's classpath from build.xml
	3.2.4 Checking if Clover is available for the build

	3.3 Usage Scenarios
	3.3.1 Using Clover Interactively
	3.3.1.1 Measuring coverage on a subset of source files
	3.3.1.2 Viewing source-level code coverage quickly
	3.3.1.3 Viewing summary coverage results quickly
	3.3.1.4 Incrementally building coverage results

	3.3.2 Using Clover in Automated Builds
	3.3.2.1 Detailed coverage reports for the whole team
	3.3.2.2 Executive summary coverage reports
	3.3.2.3 Historical coverage and project metrics reporting
	3.3.2.4 Coverage criteria checking and triggers

	3.4 Ant Task Reference
	3.4.1 Clover Ant Tasks
	3.4.1.1 Installing the Ant Tasks
	3.4.1.2 The tasks

	3.4.2 <clover-setup>
	3.4.2.1 Description
	3.4.2.2 Parameters
	3.4.2.3 Nested Elements of <clover-setup>
	3.4.2.3.1 <files>
	3.4.2.3.2 <fileset>
	3.4.2.3.3 <methodContext>
	3.4.2.3.3.1 Parameters

	3.4.2.3.4 <statementContext>
	3.4.2.3.4.1 Parameters

	3.4.2.4 Examples
	3.4.2.4.1 Interval Flushing
	3.4.2.4.2 Specifying a delegate compiler

	3.4.3 <clover-report>
	3.4.3.1 Description
	3.4.3.2 Parameters
	3.4.3.3 Nested elements of <clover-report>
	3.4.3.3.1 <current>
	3.4.3.3.1.1 Parameters
	3.4.3.3.1.2 <historical>
	3.4.3.3.1.2.1 Parameters

	3.4.3.3.1.3 Nested elements of<current>
	3.4.3.3.1.3.1 <fileset>
	3.4.3.3.1.3.2 <sourcepath>

	3.4.3.3.1.4 Nested elements of <historical>
	3.4.3.3.1.4.1 <overview>
	3.4.3.3.1.4.2 <coverage>
	3.4.3.3.1.4.2.1 Parameters

	3.4.3.3.1.4.3 <metrics>
	3.4.3.3.1.4.3.1 Parameters

	3.4.3.3.1.4.4 <movers>
	3.4.3.3.1.4.4.1 Parameters

	3.4.3.3.1.5 The <format> Element
	3.4.3.3.1.5.1 Parameters

	3.4.3.4 Examples of Current Report Configurations
	3.4.3.5 Examples of Historical Report Configurations

	3.4.4 <clover-historypoint>
	3.4.4.1 Description
	3.4.4.2 Parameters
	3.4.4.3 Nested elements of<clover-historypoint>
	3.4.4.3.1 <fileset>

	3.4.4.4 Examples

	3.4.5 <clover-check>
	3.4.5.1 Description
	3.4.5.2 Parameters
	3.4.5.3 Nested elements of <clover-check>
	3.4.5.3.1 <package>
	3.4.5.3.1.1 Parameters

	3.4.5.4 Examples

	3.4.6 <clover-log>
	3.4.6.1 Description
	3.4.6.2 Parameters
	3.4.6.3 Nested elements
	3.4.6.3.1 <Package>
	3.4.6.3.1.1 Parameters

	3.4.6.3.2 <Sourcepath>

	3.4.6.4 Examples

	3.4.7 <clover-view>
	3.4.7.1 Description
	3.4.7.2 Parameters
	3.4.7.3 Nested elements
	3.4.7.3.1 <sourcepath>

	3.4.7.4 Examples

	3.4.8 <clover-clean>
	3.4.8.1 Description
	3.4.8.2 Parameters
	3.4.8.3 Examples

	3.4.9 <clover-merge>
	3.4.9.1 Description
	3.4.9.2 Parameters
	3.4.9.3 Nested elements of <clover-merge>
	3.4.9.3.1 <cloverDb>
	3.4.9.3.1.1 Parameters

	3.4.9.3.2 <cloverDbSet>
	3.4.9.3.2.1 Parameters

	3.4.9.4 Examples

	3.5 Sharing Report Formats

	4 IDE Plugin Guides
	4.1 Clover IDE Plugins
	4.1.1 Plugin Guides

	4.2 Eclipse Plugin Guide
	4.2.1 Overview
	4.2.2 Caveats / Known problems
	4.2.3 Installation
	4.2.3.1 1 Locating your Eclipse plugin directory
	4.2.3.2 2 Removing previous versions of the plugin
	4.2.3.3 3 Installing the plugin
	4.2.3.4 4 Installing the license
	4.2.3.5 5 Start Eclipse

	4.2.4 Using the plugin
	4.2.4.1 Setting up a JDK
	4.2.4.2 Activating the Clover Eclipse plugin
	4.2.4.3 The Clover Viewer tool
	4.2.4.4 Viewing Coverage Results
	4.2.4.5 Instrumenting your code
	4.2.4.6 Online help
	4.2.4.7 Deactivating the Clover Eclipse plugin

	4.2.5 Configuration options
	4.2.5.1 Project Properties - Instrumentation Options
	4.2.5.2 Project Properties - Compilation Options
	4.2.5.3 Project Properties - Filter Options
	4.2.5.4 Clover Preferences

	4.2.6 Large Projects
	4.2.6.1 The Clover Working-Set

	4.2.7 Working with custom filters.
	4.2.8 FAQ

	4.3 Clover IDEA 3 Plugin UserGuide
	4.3.1 Overview
	4.3.2 Installing the plugin
	4.3.3 Using the plugin
	4.3.3.1 Enabling the Clover Plugin for your project
	4.3.3.2 Building your Project with Clover
	4.3.3.2.1 Build Options

	4.3.3.3 Viewing Coverage Results

	4.3.4 Configuration Options
	4.3.4.1 Compilation options
	4.3.4.2 Viewer options

	4.4 Clover IDEA 4 Plugin UserGuide
	4.4.1 Overview
	4.4.2 Installing
	4.4.3 Uninstalling
	4.4.4 Configuring your project
	4.4.5 Getting Started
	4.4.6 Viewing Coverage Results
	4.4.7 Configuration Options
	4.4.7.1 Compilation Options
	4.4.7.1.1 Initstring
	4.4.7.1.2 Flush Policy
	4.4.7.1.3 Instrumentation

	4.4.7.2 Viewer options
	4.4.7.2.1 Refresh Policy
	4.4.7.2.2 General
	4.4.7.2.3 Source Highlighting

	4.4.7.3 Filter Options
	4.4.7.3.1 Regexp Filters
	4.4.7.3.2 Block Filters

	4.4.8 Example: Creating a regexp context filter
	4.4.9 FAQ

	4.5 Clover IDEA5/6 Plugin UserGuide
	4.5.1 Overview
	4.5.2 Installing
	4.5.3 Uninstalling
	4.5.4 Configuring your project
	4.5.5 Getting Started
	4.5.6 Viewing Coverage Results
	4.5.7 Configuration Options
	4.5.7.1 Compilation Options
	4.5.7.1.1 Initstring
	4.5.7.1.2 Flush Policy
	4.5.7.1.3 Instrumentation

	4.5.7.2 Viewer options
	4.5.7.2.1 Refresh Policy
	4.5.7.2.2 General
	4.5.7.2.3 Source Highlighting

	4.5.7.3 Filter Options
	4.5.7.3.1 Regexp Filters
	4.5.7.3.2 Block Filters

	4.5.8 Example: Creating a regexp context filter
	4.5.9 FAQ

	4.6 Clover Netbeans Module
	4.6.1 Overview
	4.6.2 Installing the Module
	4.6.3 Configuring the Module
	4.6.4 Using the Module
	4.6.4.1 Build Options

	4.6.5 Viewing Coverage Results
	4.6.5.1 Coverage Browser
	4.6.5.2 Inline source annotation

	4.6.6 Configuration
	4.6.6.1 Clover Instrumentation
	4.6.6.1.1 Initstring
	4.6.6.1.2 Flush Policy

	4.6.6.2 View Settings
	4.6.6.2.1 Auto Refresh
	4.6.6.2.2 Refresh interval
	4.6.6.2.3 Show Summary

	4.6.7 FAQ
	4.6.8 Known Issues

	4.7 JBuilder Plugin Guide
	4.7.1 Overview
	4.7.2 Installing the JBuilder Plugin
	4.7.3 Uninstalling the JBuilder Plugin
	4.7.4 Quick Start Guide
	4.7.5 Working with Clover
	4.7.6 Viewing Coverage Results
	4.7.7 Configuration Options
	4.7.7.1 Compilation Options
	4.7.7.1.1 Initstring
	4.7.7.1.2 Flush Policy
	4.7.7.1.3 Filtering
	4.7.7.1.4 Compiler
	4.7.7.1.5 Language Level

	4.7.7.2 View Options
	4.7.7.2.1 Refresh Policy
	4.7.7.2.2 Inline View
	4.7.7.2.3 Source Highlighting
	4.7.7.2.4 Span

	4.7.7.3 Filter Options
	4.7.7.3.1 Block Filters
	4.7.7.3.2 Regexp Filters

	4.7.8 Example: Creating a regexp context filter
	4.7.9 FAQ

	4.8 Clover JDeveloper 10g Plugin UserGuide
	4.8.1 Overview
	4.8.2 Installing
	4.8.3 Uninstalling
	4.8.4 Configuring your Project
	4.8.5 Getting Started
	4.8.6 Viewing Coverage Results
	4.8.7 Working with Clover
	4.8.8 Compilation Options
	4.8.9 Viewing options
	4.8.10 Filter Options
	4.8.11 Example: Creating a regexp context filter
	4.8.12 Source Highlight Options
	4.8.13 FAQ

	5 Command Line Tools
	5.1 Clover Command Line Tools
	5.1.1 Command line tools:

	5.2 CloverInstr
	5.2.1 Usage
	5.2.2 Params
	5.2.3 Options
	5.2.4 API Usage
	5.2.5 Examples

	5.3 CloverMerge
	5.3.1 Usage
	5.3.2 Params
	5.3.3 Options
	5.3.4 API Usage
	5.3.5 Examples

	5.4 XmlReporter
	5.4.1 Usage
	5.4.2 Params
	5.4.3 Options
	5.4.4 API Usage
	5.4.5 Examples

	5.5 HtmlReporter
	5.5.1 Usage
	5.5.2 Params
	5.5.3 Options
	5.5.4 API Usage
	5.5.5 Examples

	5.6 PDFReporter
	5.6.1 Usage
	5.6.2 Params
	5.6.3 Options
	5.6.4 API Usage
	5.6.5 Examples

	5.7 ConsoleReporter
	5.7.1 Usage
	5.7.2 Params
	5.7.3 Options
	5.7.4 API Usage
	5.7.5 Examples

	5.8 SwingViewer
	5.8.1 Usage
	5.8.2 Params
	5.8.3 Options
	5.8.4 API Usage
	5.8.5 Examples

	6 Advanced Usage
	6.1 Background: The Clover Coverage Database
	6.1.1 Database structure and lifecycle
	6.1.1.1 Registry file
	6.1.1.2 ContextDef file
	6.1.1.3 CoverageRecording Files

	6.1.2 Managing the Clover database

	6.2 Using Clover with Distributed Applications
	6.2.1 Background: the Clover initstring
	6.2.2 Telling Clover how to find it's registry
	6.2.3 Classpath Issues
	6.2.4 Restricted Security Environments
	6.2.4.1 Recommended Permissions

	6.3 Flush Policies
	6.4 Source Directives
	6.4.1 Switching Clover on and off
	6.4.2 Force Clover to flush
	6.4.3 Change instrumentation strategy

	6.5 Contexts
	6.5.1 Block Contexts
	6.5.2 Method Contexts
	6.5.3 Statement Contexts
	6.5.4 Using Context Filters
	6.5.4.1 Filtering catch blocks
	6.5.4.2 Filtering logging statements

	6.6 Using Spans
	6.7 Extracting coverage data programmatically
	6.7.1 Using XPath with Clover's XML reports

	7 Tutorials
	7.1 Using Clover with Ant and JUnit
	7.1.1 Using Clover with Ant and JUnit
	7.1.1.1 Before you start
	7.1.1.2 The tutorial work area

	7.1.2 Part 1 - Measuring coverage with Clover
	7.1.2.1 Introduction
	7.1.2.2 Compiling and running
	7.1.2.2.1 Compiling
	7.1.2.2.2 Running the tests

	7.1.2.3 Adding Clover targets
	7.1.2.3.1 Adding Clover task definitions
	7.1.2.3.2 Adding a target to enable Clover
	7.1.2.3.3 Adding Clover to the build classpath

	7.1.2.4 Testing with Clover
	7.1.2.4.1 Compile with Clover
	7.1.2.4.2 Running the tests

	7.1.2.5 Creating a report
	7.1.2.5.1 Adding a Clover report target
	7.1.2.5.2 Generating the report

	7.1.2.6 Interpreting the report
	7.1.2.7 Improving coverage

	7.1.3 Part 2 - Historical Reporting
	7.1.3.1 Introduction
	7.1.3.2 Creating history points
	7.1.3.2.1 Adding a history point target
	7.1.3.2.2 Recording a history point

	7.1.3.3 Generating historical data
	7.1.3.4 Creating historical reports
	7.1.3.4.1 Add a historical report target
	7.1.3.4.2 Generating a historical report

	7.1.3.5 Interpreting historical reports
	7.1.3.6 Customising historical reports
	7.1.3.6.1 Changing output format
	7.1.3.6.2 Chart Selection
	7.1.3.6.3 Chart Configuration
	7.1.3.6.4 'Movers' Configuration

	7.1.4 Part 3 - Advanced Features
	7.1.4.1 Introduction
	7.1.4.2 Automating coverage checking
	7.1.4.2.1 Adding coverage checking
	7.1.4.2.2 Failing the build if coverage criteria not met
	7.1.4.2.3 Adding Package-level coverage criteria
	7.1.4.2.4 Context filtering

	8 Miscellaneous
	8.1 Swing Viewer
	8.1.1 Overview
	8.1.1.1 Launching the viewer from Ant
	8.1.1.2 Launching the viewer from the Command Line
	8.1.1.3 Package View
	8.1.1.4 Coverage and Metrics
	8.1.1.5 Code View

	8.1.2 Generating Reports

	8.2 Interval Format
	8.3 Frequently Asked Questions
	8.3.1 Questions
	8.3.2 Answers
	8.3.2.1 1. General
	8.3.2.1.1 1.1.
 Can't find an answer here?

	8.3.2.1.2 1.2.
 What is Code Coverage Analysis?

	8.3.2.1.3 1.3.
 What are the limitations of Code Coverage?

	8.3.2.1.4 1.4.
 Where did Clover originally come from?

	8.3.2.1.5 1.5.
 Why the name "Clover"?

	8.3.2.2 2. Technical Background
	8.3.2.2.1 2.1.
 Does Clover depend on JUnit?

	8.3.2.2.2 2.2.
 Does Clover work with JUnit4 and TestNG?

	8.3.2.2.3 2.3.
 Why does Clover use Source Code Instrumentation?

	8.3.2.2.4 2.4.
 Will Clover integrate with my IDE?

	8.3.2.2.5 2.5.
 Does Clover integrate with Maven?

	8.3.2.2.6 2.6.
 What 3rd Party libraries does Clover utilise?

	8.3.2.2.7 2.7.
 How are the Clover coverage percentages calculated?

	8.3.2.2.8 2.8.
 Does Clover support the new language features in JDK1.5?

	8.3.2.3 3. Troubleshooting
	8.3.2.3.1 3.1.
 Two questions to ask yourself first when troubleshooting Clover:

	8.3.2.3.2 3.2.
 When using Clover from Ant, why do I get "Compiler Adapter 'org.apache.tools.ant.taskdefs.CloverCompilerAdapter' can't
 be found." or similar?

	8.3.2.3.3 3.3.
 When using Clover, why do I get a java.lang.NoClassDefFoundError when I run my code?

	8.3.2.3.4 3.4.
 When generating some report types on my unix server with
 no XServer, I get an exception "Can't connect to X11 server" or similar.

	8.3.2.3.5 3.5.
 Why do I get 0% coverage when I run my tests and then a reporter from the same instance of Ant?

	8.3.2.3.6 3.6.
 Why do I get an java.lang.OutOfMemoryError when compiling with Clover turned on?

	8.3.2.3.7 3.7.
 For some statements in my code Clover reports "No Coverage information gathered for this expression".
 What does that mean?

	8.3.2.3.8 3.8.
 Why does Clover instrument classes I have excluded using the <exclude>
 element of the <clover-setup> task?

	8.3.2.3.9 3.9.
 I'm trying to get a coverage report mailed to the team as shown in your example, but I keep getting
 "[mail] Failed to send email". How do I fix this?

