
Clover User Manual
Version 1.3.13

Includes:
Eclipse Plugin 1.2.10
IDEA 3.x Plugin 0.8
IDEA 4.x Plugin 1.0.7
IDEA 5.x Plugin 1.0.8
IDEA 6.x Plugin @IDEA6_RELEASE_NUM@
JDeveloper Plugin 1.0
JBuilder Plugin 1.0
NetBeans Module 0.6

1. Introduction

1.1. Starting Points

If you are new to Clover and want to get it going with your Ant project quickly, try the
Quickstart Guide. The Introduction for Code Coverage section provides a brief
background on the theory and motivation behind Code Coverage.

If you are browsing and interested in seeing how Clover can be used on your project, see
Using Clover Interactively and Using Clover in Automated builds.

If you are using a Clover IDE Plugin, see the Plugin Guides section.

The Clover Tutorial provides a good alternative introduction to Clover.

For help with Ant, see The online Ant manual at http://ant.apache.org/manual/index.html.

For Clover troubleshooting information, see the FAQ or Online Forums.

1.1.1. System Requirements

JDK Version JDK 1.2 or greater required to perform
instrumented compilation and coverage
measurement.
JDK 1.3 or greater required to produce
coverage reports.

Ant Version Ant 1.4.1 or greater.

Operating System Clover is a pure Java application and should run
on any platform provided the above
requirements are satisfied.

The Clover IDE Plugins document their own IDE version requirements. Please consult the
Plugins Section

1.1.2. Installing your license file

You need a valid Clover license file to run Clover. You can obtain a free 30 day evaluation
license or purchase a commercial license at http://www.cenqua.com.

To install your Clover license file, you need to do one of the following:

• Place the license file next to the Clover jar file (or next to the Clover plugin jar file, if you
are running a Clover IDE plugin).

Clover 1.3.13 User Manual

Page 2
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://ant.apache.org/manual/
http://www.cenqua.com/forums/
http://www.cenqua.com

• Place the license file on the Java Classpath that will be used to run Clover.
• Place the license file on the file system somewhere, and then set the Java System

Property clover.license.path to the absolute path of the license file.

1.1.3. Acknowledgements

Clover makes use of the following excellent 3rd party libraries.

Jakarta Velocity 1.2 Templating engine used for Html report
generation.

Antlr 2.7.1 A public domain parser generator.

iText 0.96 Library for generating PDF documents.

Jakarta Ant The Ant build system.

Note:
To prevent library version mismatches, all of these libraries have been obfuscated and/or repackaged and included in the clover
jar. We do this to prevent pain for users that may use different versions of these libraries in their projects.

Clover 1.3.13 User Manual

Page 3
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

2. Code Coverage

2.1. Code Coverage

2.1.1. What is Code Coverage?

Code coverage measurement simply determines those statements in a body of code have been
executed through a test run and those which have not. In general, a code coverage system
collects information about the running program and then combines that with source
information to generate a report on test suite's code coverage.

Code coverage is part of a feedback loop in the development process. As tests are developed,
code coverage highlights aspects of the code which may not be adequately tested and which
require additional testing. This loop will continue until coverage meets some specified target.

2.1.2. Why Measure Code Coverage?

It is well understood that unit testing improves the quality and predictability of your software
releases. Do you know, however, how well your unit tests actually test your code? How
many tests are enough? Do you need more tests? These are the questions code coverage
measurement seeks to answer.

Coverage measurement also helps to avoid test entropy. As your code goes through multiple
release cycles, there can be a tendency for unit tests to atrophy. As new code is added, it may
not meet the same testing standards you put in place when the project was first released.
Measuring code coverage can keep your testing up to the standards you require. You can be
confident that when you go into production there will be minimal problems because you
know the code not only passes its tests but that it is well tested.

In summary, we measure code coverage for the following reasons:

• To know how well our tests actually test our code
• To know whether we have enough testing in place
• To maintain the test quality over the lifecycle of a project

Code coverage is not a panacea. Coverage generally follows an 80-20 rule. Increasing
coverage values becomes difficult with new tests delivering less and less incrementally. If
you follow defensive programming principles where failure conditions are often checked at
many levels in your software, some code can be very difficult to reach with practical levels
of testing. Coverage measurement is not a replacement for good code review and good
programming practices.

Clover 1.3.13 User Manual

Page 4
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

In general you should adopt a sensible coverage target and aim for even coverage across all
of the modules that make up your code. Relying on a single overall coverage figure can hide
large gaps in coverage.

2.1.3. How Code Coverage Works

There are many approaches to code coverage measurement. Broadly there are three
approaches, which may be used in combination:

Source Code Instrumentation This approach adds instrumentation statements
to the source code and compiles the code with
the normal compile tool chain to produce an
instrumented assembly.

Intermediate code Instrumentation Here the compiled class files are instrumented
by adding new bytecodes and a new
instrumented class generated.

Runtime Information collection This approach collects information from the
runtime environment as the code executes to
determine coverage information

Clover uses source code instrumentation, because although it requires developers to perform
an instrumented build, source code instrumentation produces the most accurate coverage
measurement for the least runtime performance overhead.

As the code under test executes, code coverage systems collect information about which
statements have been executed. This information is then used as the basis of reports. In
addition to these basic mechanisms, coverage approaches vary on what forms of coverage
information they collect. There are many forms of coverage beyond basic statement coverage
including conditional coverage, method entry and path coverage.

2.1.4. Code Coverage with Clover

Clover is designed to measure code coverage in a way that fits seamlessly with your current
development environment and practices, whatever they may be. Clover's IDE Plugins
provide developers with a way to quickly measure code coverage without having to leave the
IDE. Clover's Ant and Maven integrations allow coverage measurement to be performed in
Automated Build and Continuous Integration systems and reports generated to be shared by
the team.

Types of Coverage measured

Clover measures three basic types of coverage analysis:

Clover 1.3.13 User Manual

Page 5
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Statement Statement coverage measures whether each
statement is executed

Branch Branch coverage (sometimes called Decision
Coverage) measures which possible branches in
flow control structures are followed. Clover does
this by recording if the boolean expression in
the control structure evaluated to both true and
false during execution.

Method Method coverage measures if a method was
entered at all during execution.

Clover uses these measurements to produce a Total Coverage Percentage for each class, file,
package and for the project as a whole. The Total Coverage Percentage allows entities to be
ranked in reports. The Total Coverage Percentage (TPC) is calculated as follows:

TPC = (BT + BF + SC + MC)/(2*B + S + M)

where

BT - branches that evaluated to "true" at least once
BF - branches that evaluated to "false" at least once
SC - statements covered
MC - methods entered

B - total number of branches
S - total number of statements
M - total number of methods

Clover 1.3.13 User Manual

Page 6
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

3. Clover with Ant

3.1. Quick Start Guide for Ant

This section shows you how to quickly get Clover integrated into your build. Clover
instrumentation and reporting are highly configurable so later sections of this manual will
detail available configuration options and typical usage scenarios.

Follow these simple steps to integrate Clover with your build:

3.1.1. Install Clover

ensure you are using a recent version of Ant (v1.4.1 or greater)

copy <CLOVER_HOME>/lib/clover.jar into <ANT_HOME>/lib. (If you can't install
into ANT_HOME/lib, see Installation Options).

3.1.2. Add Clover targets

Edit build.xml for your project:

1. add the Clover Ant tasks to your project:

<taskdef resource="clovertasks"/>
2. add a target to switch on Clover:

<target name="with.clover">
<clover-setup initString="mycoverage.db"/>

</target>
3. add one or more targets to run clover reports:

to launch the Swing viewer, use:

<target name="clover.swing" depends="with.clover">
<clover-view/>

</target>
- OR - for html reporting, use (change the outfile to a directory path where Clover should
put the generated html):

<target name="clover.html" depends="with.clover">
<clover-report>

<current outfile="clover_html">
<format type="html"/>

</current>
</clover-report>

</target>
- OR - for xml reporting, use (change the outfile to a file where Clover should write the

Clover 1.3.13 User Manual

Page 7
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

xml file):

<target name="clover.xml" depends="with.clover">
<clover-report>

<current outfile="coverage.xml">
<format type="xml"/>

</current>
</clover-report>

</target>
- OR - for pdf reporting, use (change the outfile to a file where Clover should write the
pdf file):

<target name="clover.pdf" depends="with.clover">
<clover-report>

<current outfile="coverage.pdf">
<format type="pdf"/>

</current>
</clover-report>

</target>
- OR - for simple emacs-style reporting to the console, try:

<target name="clover.log" depends="with.clover">
<clover-log/>

</target>
4. Add clover.jar to the runtime classpath for your tests. How you do this depends

on how you run your tests. For tests executed via the <junit> task, add a classpath
element:

<junit ...>
...
<classpath>

<pathelement path="${ant.home}/lib/clover.jar"/>
</classpath>

</junit>

3.1.3. Compile and run with Clover

Now you can build your project with Clover turned on by adding the "with.clover" target to
the list of targets to execute. For example (if your compile target is named 'build' and your
unit test target is named 'test'):

ant with.clover build test

3.1.4. Generate a Coverage Report

To generate a Clover coverage report:

ant clover.html (or clover.xml, clover.view etc)

Clover 1.3.13 User Manual

Page 8
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

3.2. Installation Options

In order to use Clover with Ant you must put clover.jar in Ant's classpath. Options for
doing this depend on the version of Ant you are using.

3.2.1. Ant 1.4.1, 1.5.x

Prior to Ant 1.6, the easiest way to install Clover is to copy clover.jar into
ANT_HOME/lib (Since all jars in this directory are automatically added to Ant's classpath
by the scripts that start Ant).

Alternatively, you can add CLOVER_HOME/clover.jar to the CLASSPATH system
environment variable before running Ant. For information about setting this variable, please
consult your Operating System documentation.

3.2.2. Ant 1.6.x

Ant 1.6 introduces several new ways to add jars to Ant's classpath. This allows more
flexibility when installing Clover.

Installing Clover locally for a single user

1. create a directory ${user.home}/.ant/lib
2. copy clover.jar to ${user.home}/.ant/lib

Note:
The location of ${user.home} depends on your JVM and platform. On Unix systems ${user.home} usually maps to the
user's home directory. On Windows systems ${user.home} will map to something like C:\Documents and
Settings\username\. Check your JVM documentation for more details.

Installing Clover at an arbitary location

You can install Clover at an arbitary location and then refer to it using the -lib command
line option with Ant:

ant -lib CLOVER_HOME/lib buildWithClover

(Where CLOVER_HOME is the directory where Clover was installed).

3.2.3. Adding Clover to Ant's classpath from build.xml

In some cases it is not desirable to add clover.jar to Ant's classpath using the methods
described above. This section outlines a method for adding clover.jar to Ant's classpath

Clover 1.3.13 User Manual

Page 9
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

by modifying only the project build.xml file, using a special utility Ant task called
<extendclasspath> that is distributed with Clover.

The <extendclasspath> task is distributed in
CLOVER_HOME/etc/cenquatasks.jar

1. copy CLOVER_HOME/lib/clover.jar and
CLOVER_HOME/etc/cenquatasks.jar to a project-relative directory (the rest of
these instructions assume both jars are installed at PROJECT_HOME/lib)

2. edit build.xml and add the following near the top of the file:

<taskdef resource="com/cenqua/ant/antlib.xml" classpath="lib/cenquatasks.jar"/>
<extendclasspath path="lib/clover.jar"/>
<taskdef resource="clovertasks" classpath="lib/clover.jar"/>

You can now use the standard Clover Ant tasks in your build.xml file.

3.2.4. Checking if Clover is available for the build

In some cases you may want to check if Clover is available before executing Clover-related
targets. For example, you may need to ship the build file to others who may not have Clover
installed. To check Clover's availability you can make use of the standard Ant
<available> task:

<target name="-check.clover">
<available property="clover.installed"

classname="com.cenqua.clover.CloverInstr" />
</target>

<target name="guard.noclover" depends="-check.clover" unless="clover.installed">
<fail message="The target you are attempting to run requires Clover, which doesn't appear to be installed"/>

</target>

<target name="with.clover" depends="guard.noclover">
...

3.3. Usage Scenarios

3.3.1. Using Clover Interactively

In this scenario, a developer is responsible for obtaining a certain level of code coverage on
her code before it is accepted into the base. The typical cycle the developer follows is
something like:

1. write code/tests

Clover 1.3.13 User Manual

Page 10
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

2. run tests
3. inspect test results and code coverage

This process is repeated until all tests pass and code coverage of the tests meets a certain
level.

Clover provides the following features to support this development pattern:

• Measuring coverage on a subset of source files
• Viewing source-level code coverage quickly
• Viewing summary coverage results quickly
• Incrementally building coverage results

Measuring coverage on a subset of source files

The <clover-setup> task takes an optional nested fileset element that tells Clover which files
should be included/excluded in coverage analysis:

<clover-setup initstring="clover-db/mycoverage.db">
<files includes="**/plugins/cruncher/**, **/plugins/muncher/**"/>

</clover-setup>

The includes could be set using an Ant property so that individual developers can specify
includes on the command line:

<property name="coverage.includes" value="**"/>
<clover-setup initstring="clover-db/mycoverage.db">

<files includes="${coverage.includes}"/>
</clover-setup>

Developers can then use a command line like:

ant build -Dcoverage.includes=**/foo/*.java

Viewing source-level code coverage quickly

Clover provides two ways of quickly viewing coverage results. The <clover-log> task
provides quick reporting to the console:

<clover-log/>

The output format from the clover-log task uses the file:line:column format that many IDEs
can parse.

The <clover-view> task launches the Swing coverage viewer which allows interactive
browsing of coverage results:

<clover-view/>

Clover 1.3.13 User Manual

Page 11
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Note:
If you launch the viewer from a second window, it can be left running while you develop. At the end of every test run, you can
hit the "refresh" button on the viewer to load the latest coverage results.

Viewing summary coverage results quickly

The <clover-log> task provides an option that will print a summary of coverage results to the
console:

<clover-log level="summary"/>

Incrementally building coverage results

When iteratively improving coverage on a subset of your project, you may want to include
coverage data from several iterations in coverage results. Clover supports this with the span
attribute which works on current reports - see Using Spans. This attribute can be used to tell
Clover how far back in time to include coverage results (measured from the time of the last
Clover build). To include results gathered over the last hour use:

<clover-log span="1h"/>

3.3.2. Using Clover in Automated Builds

In this scenario, the project is checked out, built and tested at regular intervals, usually by an
automated process. Some third party tools that support this type of build are AntHill,
Centipede and CruiseControl.

Clover supports this scenario with the following features:

• Detailed coverage reports for the whole team
• Executive summary coverage reports
• Historical coverage and project metrics reporting
• Coverage criteria checking and triggers

Detailed coverage reports for the whole team

The <clover-report> task generates source-level html coverage reports that can be published
for viewing by the whole team:

<target name="clover.report" depends="with.clover">
<clover-report>

<current outfile="clover_html">
<format type="html"/>

</current>

Clover 1.3.13 User Manual

Page 12
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://www.urbancode.com/projects/anthill/default.jsp
http://krysalis.org/centipede/
http://cruisecontrol.sourceforge.net/

</clover-report>
</target>

Executive summary coverage reports

The <clover-report> task can generate summary reports in PDF suitable for email or audit
purposes.

<target name="clover.summary" depends="with.clover">
<clover-report>

<current summary="yes" outfile="coverage.pdf">
<format type="pdf"/>

</current>
</clover-report>

</target>

Historical coverage and project metrics reporting

Clover can generate a historical snapshot of coverage and other metrics for your project using
the <clover-historypoint> task. Historical data can then be colated into a historical report
using the <clover-report> task:

<target name="clover.report" depends="with.clover">

<!-- generate a historypoint for the current coverage -->
<clover-historypoint historyDir="clover_hist"/>

<clover-report>

<!-- generate a current report -->
<current outfile="clover_html">

<format type="html"/>
</current>

<!-- generate a historical report -->
<historical outfile="clover_html/historical.html"

historyDir="clover_hist">
<format type="html"/>

</historical>
</clover-report>

</target>

Coverage criteria checking and triggers

The <clover-check> task can be used to monitor coverage criteria. If coverage does not meet
the criteria, the build can be made to fail or an arbitary activity can be triggered. In the
example below, if project coverage is not 80%, an executive summary coverage report is
generated and mailed to the team:

Clover 1.3.13 User Manual

Page 13
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

<target name="coverageAlert" depends="coverage.check"
if="coverage_check_failure">

<clover-report>
<current summary="yes" outfile="coverage.pdf">

<format type="pdf"/>
</current>

</clover-report>
<mail from="nightlybuild@somewhere.not"

tolist="team@somewhere.not"
subject="coverage criteria not met"
message="${coverage_check_failure}"
files="coverage.pdf"/>

</target>

<target name="coverage.check" depends="with.clover">
<clover-check target="80%"

failureProperty="coverage_check_failure"/>
</target>

3.4. Ant Task Reference

3.4.1. Clover Ant Tasks

Installing the Ant Tasks

Clover provides a set of ant tasks to make project integration easy. To make these tasks
available in your project build file, you need to:

1. install clover.jar into ANT_HOME/lib
2. add the following lines to your build file:

<taskdef resource="clovertasks"/>
<typedef resource="clovertypes"/>

The tasks

<clover-setup> Configures and initialises Clover. This task
needs to be run before other Clover tasks.

<clover-report> Produces coverage reports in different formats.

<clover-check> Tests project/package code coverage against
criteria, optionally failing the build if the criteria
are not met.

<clover-log> Reports coverage results to the console at
various levels.

<clover-historypoint> Records a coverage history point for use in
historical coverage reports.

Clover 1.3.13 User Manual

Page 14
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

<clover-view> Launches the Swing coverage viewer.

<clover-clean> Delete the coverage database and/or associated
coverage records.

<clover-merge> Merges two or more Clover databases to allow
multi-project reporting.

3.4.2. <clover-setup>

Description

The <clover-setup> task initialises Clover for use with your project. In Clover 1.0, Clover's
operation was managed by setting various Ant properties. The <clover-setup> task simplifies
this procedure.

Parameters

Attribute Description Required

initstring The Clover initString describes
the location of the clover
coverage database. Typically
this is a relative or absolute file
reference. Note that this value
is not resolved relative to the
project's base directory.

Yes

enabled This controls whether Clover
will instrument code during
code compilation. This attribute
provides a convenient control
point to enable or disable
Clover from the command line

No; defaults to true

clovercompiler After instrumentation, Clover
hands off compilation to the
standard Ant compiler adapter
(or the compiler specified by
the build.compiler Ant
property). This attribute
specifies the adapter to use. It
takes the same values as the
standard Ant build.compiler
property. If you wish to specify
an alternative compiler, you
can either set the

No

Clover 1.3.13 User Manual

Page 15
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

build.compiler property or use
this attribute.

preserve A boolean attribute which
controls whether the
instrumented source will be
retained after compilation.

No; defaults to false

source The default source level to
process source files at. Note
that setting the source attribute
on the <javac> target will
override this setting.

No

tmpdir The directory into which Clover
will write an instrumented copy
of the source code.

No

flushpolicy This attribute controls how
Clover flushes coverage data
during a test run. Valid values
are directed, interval, or
threaded.

directed
Coverage data is flushed at
JVM shutdown, and after
an inline flush directive.
interval
Coverage data is flushed
as for directed, as well
as periodically at a
maximum rate based on
the value of
flushinterval. This is a
"passive" mode in that
flushing potentially occurs
as long as instrumented
code is being executed.
threaded
Coverage data is flushed
as for directed, as well
as periodically at a rate
based on the value of
flushinterval. This is
an "active" mode in that
flushing occurs on a
separate thread and is not
dependent on the

No; defaults to directed

Clover 1.3.13 User Manual

Page 16
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

execution of instrumented
code.

For more information, see Flush
Policies.

flushinterval When the flushpolicy is set to
interval or threaded this
value is the minimum period
between flush operations (in
milliseconds)

No

relative This controls whether the
initstring parameter is treated
as a relative path or not.

No; defaults to false

It is important to note that the Clover compiler adapter still picks up its settings from the set
of Clover Ant properties. The <clover-setup> task provides a convenience method to set
these properties. This means that builds that use the Clover 1.0 property set will continue to
operate as expected.

Nested Elements of <clover-setup>

<files>

An Ant patternset element which controls which files are included or excluded from Clover
instrumentation.

Note:
The <useclass> sub-element has been deprecated and has no effect.

<fileset>

As of Clover 1.2, <clover-setup> also supports multiple Ant <filesets>. These give greater
flexibility in specifying which source files are to be instrumented by Clover. This is useful
when you have more than one source base and only want some of those source bases to be
instrumented. This can be difficult to setup with patterns. Filesets also allow much greater
flexibility in specifying which files to instrument by facilitating the use of Ant's fileset
selectors.

<methodContext>

Specifies a method Context definition. See Using Contexts for more information.

Clover 1.3.13 User Manual

Page 17
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Parameters

Attribute Description Required

name The name for this context. Must
be unique, and not be one of
the reserved context names
(See Using Contexts)

Yes

regexp A Perl 5 Regexp that defines
the context. This regexp should
match the method signatures of
methods you wish to include in
this context. Note that when
method signatures are tested
against this regexp, whitespace
is normalised and comments
are ignored.

yes

<statementContext>

Specifies a statement Context definition. See Using Contexts for more information.

Parameters

Attribute Description Required

name The name for this context. Must
be unique, and not be one of
the reserved context names
(See Using Contexts)

Yes

regexp A Perl 5 Regexp that defines
the context. This regexp should
match statements you wish to
include in this context. Note
that when statements are
tested against this regexp,
whitespace is normalised and
comments are ignored.

yes

Examples

<clover-setup initstring="clover-db/coverage.db"/>

This example is the minimal setup to use clover. In this case the clover coverage database is

Clover 1.3.13 User Manual

Page 18
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

located in the clover-db relative directory.

<clover-setup initstring="clover-db/coverage.db"
enabled="${enable}"

<files>
<exclude name="**/optional/**/*.java"/>

</files>
</clover-setup>

This example shows the use of a property, "enable", to control whether Clover
instrumentation is enabled. Also the instrumentation will exclude all java source files in trees
named "optional". Note that the fileset can also be referenced using a refid attribute.

<clover-setup initstring="clover-db/coverage.db"
enabled="${coverage.enable}"

<fileset dir="src/main">
<contains text="Joe Bloggs"/>

</fileset>
</clover-setup>

This example instruments all source files in the src/main directory tree that contain the string
"Joe Bloggs". Ant's filesets supports a number of these selectors. Please refer to the Ant
manual for information on these selectors.

Interval Flushing

By default Clover will write coverage data to disk when the hosting JVM exits, via a
shutdown hook. This is not always practical, particularly when the application you are testing
runs in an Application Server. In this situation, you can configure Clover to use "interval"
flushing, where coverage data is written out periodically during execution:

<clover-setup initstring="clover-db/coverage.db"
flushpolicy="interval"
flushinterval="5000"/>

The "flushinterval" defines in milliseconds the minimum interval between coverage data
writes.

Specifying a delegate compiler

Clover provides the optional "clovercompiler" attribute to allow specification of the java
compiler to delegate to once instrumentation is completed. The attribute accepts the same
values "compiler" attribute of the Ant Javac Task.

<clover-setup initstring="clover-db/coverage.db"
clovercompiler="jikes"/>

Clover 1.3.13 User Manual

Page 19
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

This example will pass compilation to the "jikes" compiler once instrumentation is complete.

3.4.3. <clover-report>

Description

Generates current and historical reports in multiple formats. The basic nesting of elements
within the <clover-report> task is as follows:
<clover-report>
<current>

<fileset/>
<sourcepath/>
<format/>

</current>
<historical>

<format/>
<overview/>
<coverage/>
<metrics/>
<movers/>

</historical>
</clover-report>

Parameters

Attribute Description Required

initstring The initstring of the coverage
database.

No; If not specified here, you
must ensure <clover-setup> is
called prior the execution of this
task.

failOnError If true, failure to generate a
report causes a build failure.

No; defaults to "true".

Nested elements of <clover-report>

These elements represent the actual reports to be generated. You can generate multiple
reports by specifying more than one of these inside a <clover-report> element.

<current>

Generates a current coverage report. Specify the report format using a nested Format
element. Valid formats are XML, HTML, and PDF although not all configurations support
all formats. The default format is PDF if summary="true" or XML if not. See Current Report
examples.

Clover 1.3.13 User Manual

Page 20
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Parameters

Attribute Description Required

title Specifies a title for the report. No

titleAnchor if specified, the report title will
be rendered as a hyperlink to
this href.

No; default is to not render the
report title as a hyperlink.

titleTarget Specifies the href target if the
title is to be rendered as a
hyperlink (see titleAnchor
above). HTML format only

No; default is "_top"

alwaysReport If set to true, a report will be
generated even in the absence
of coverage data.

No; defaults to "false"

outfile The outfile to write output to. If
it does not exist, it is created.
Depending on the specified
format, this either represents a
regular file (PDF, XML) or a
directory (HTML).

Yes

summary Specifies whether to generate a
summary report or detailed
report.

No; Defaults to "false".

package Restricts the report to a
particular package.

No

span Specifies how far back in time
to include coverage recordings
from since the last Clover build.
See Using Spans.

No; Defaults to "0s".

<historical>

Generates a historical coverage report. Specify the report format using a nested Format
element. Valid formats are HTML or PDF. The default format is PDF. Contents of the
historical report are optionally controlled by nested elements. See Nested elements of
Historical.

Parameters

Clover 1.3.13 User Manual

Page 21
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Attribute Description Required

title Specifies a title for the report. No

titleAnchor if specified, the report title will
be rendered as a hyperlink to
this href.

No; default is to not render the
report title as a hyperlink.

titleTarget Specifies the href target if the
title is to be rendered as a
hyperlink (see titleAnchor
above). HTML format only

No; default is "_top"

outfile The outfile to write output to. If
it does not exist, it is created.
Depending on the specified
format, this either represents a
regular file (PDF) or a directory
(HTML).

Yes

historyDir The directory containing Clover
historical data as produced by
the <clover-historypoint> task.

Yes

package Restricts the report to a
particular package.

No

from Specifies the date before which
data points will be ignored. The
date must be specified either
using the default
java.text.SimpleDateFormat for
your locale or using the pattern
defined in the "dateFormat"
attribute.

No

to Specifies the date after which
data points will be ignored. The
date must be specified either
using the default
java.text.SimpleDateFormat for
your locale or using the pattern
defined in the "dateFormat"
attribute.

No

dateFormat Specifies a date format string
for parsing the "from" and "to"
fields. The string must contain
a valid

No; default set to
java.text.SimpleDateFormat
using the default pattern and
date format symbols for the

Clover 1.3.13 User Manual

Page 22
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

java.text.SimpleDateFormat
pattern.

default locale.

Nested elements of<current>

<fileset>

<current> supports nested filesets which control which source files are to be included in a
report. Only classes which are from the source files in the fileset are included in the report.
This allows reports to focus on certain packages or particular classes. By using Ant's fileset
selectors, more complicated selections are possible, such as the files which have recently
changed, or files written by a particular author.

<sourcepath>

Specifies a Ant path that Clover should use when looking for source files.

Nested elements of <historical>

These elements represent individual sections of the historical report. If you do not specify
any of these elements, all the sections will be included in the report. If you specify more one
or more of these elements, only the specified sections will be included. You may specify
multiple <overview> and <coverage> elements in the historical report. These may have
different properties and include different elements. The charts will appear in the report in the
same order they appear in the <historical> element. The <movers> element always appears at
the end of the report following these charts regardless of its location in the <historical>
element. <historical> element.

<overview>

Specifies a section that provides summary of the total percentage coverage at the last history
point. This element does not support any attributes.

<coverage>

Specifies a chart showing percentage coverage over time.

Parameters

Attribute Description Required

include A comma or space separated No; the default is that

Clover 1.3.13 User Manual

Page 23
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

list of coverage metrics to
include in the chart. Valid
values are: branches,
statements, methods,
total

everything is included

<metrics>

Specifies a chart showing other metrics over time.

Parameters

Attribute Description Required

include A comma or space separated
list of metrics to include in the
chart. Valid values are: loc,
ncloc, statements,
methods, classes,
files, packages

No; defaults to loc, ncloc,
methods, classes

logscale Specifies that a log scale be
used on the Range Axis. This
can be useful if you are
including, say LOC and
packages in the same chart.

No; default is "true"

<movers>

Specifies a table that shows those classes that have a coverage delta higher than a specified
threshold over a specified time preiod.

Parameters

Attribute Description Required

threshold The absolute point change in
percent coverage that class
must have changed by for
inclusion. e.g "10%".

No; defaults to 1%

range The maximum number of
classes to show. If the value is
5, then a maximum of 5
"gainers" and 5 "losers" will be
shown.

No; The defaults to 5

Clover 1.3.13 User Manual

Page 24
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

interval The time interval over which
the delta should be calculated
(from the last history point).
Uses the Interval format. The
range is automatically adjusted
to the closest smaller interval
available.

No; The default is to take the
delta of the last two history
points

The <format> Element

Specifies the output format and various options controlling the rendering of a report.

Parameters

Attribute Description Required

type The output format to render the
report in. Valid values are pdf,
xml, html. Note that not all
reports support all formats.

Yes, unless refid is set

refid the id of another format
element that will be used for
this report. See Sharing Report
Formats.

No

id the id of this format element. No

bw Specify that the report should
be black and white. This will
make HTML reports smaller
(with no syntax hilighting) and
make PDF reports suitable for
printing on a non-colour printer.

No; defaults to "false"

orderBy Specify how to order coverage
tables. This attribute has no
effect on XML format. Valid
values are:

Alpha
Alpabetical.
PcCoveredAsc
Percent total coverage,
ascending.
PcCoveredDesc
Percent total coverage,
descending.
ElementsCoveredAsc

No; defaults to PcCoveredAsc

Clover 1.3.13 User Manual

Page 25
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Total elements covered,
ascending
ElementsCoveredDesc
Total elements covered,
descending
ElementsUncoveredAsc
Total elements uncovered,
ascending
ElementsUncoveredDesc
Total elements uncovered,
descending

noCache (HTML only) if true, insert
nocache directives in html
output.

No; defaults to "false"

srcLevel if true, include source-level
coverage information in the
report.

No; defaults to "true"

filter comma or space separated list
of contexts to exclude when
generating coverage reports.
See Using Contexts.

No

pageSize (PDF only) Specify the page
size to use. Valid values are
A4, LETTER

No; defaults to "A4"

showEmpty If true, classes, files and
packages that do not contain
any executable code (i.e.
methods, statements, or
branches) are included in
reports. These are normally not
shown.

No; defaults to "false"

tabWidth (Source level reports only) The
number of space chars to
replace TAB characters with.

No; defaults to 4

maxNameLength The maximum length in chars
of package or classnames in
the report. Longer names will
be truncated. A value < 0
indicates no limit.

No; defaults to no limit

Examples of Current Report Configurations

Clover 1.3.13 User Manual

Page 26
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

<clover-report>
<current outfile="current.xml"/>

</clover-report>

Generates an XML report of the current coverage.

<clover-report>
<current outfile="current.pdf">

<format type="pdf"/>
</current>

</clover-report>

Generates a PDF report of the current coverage.

<clover-report>
<current outfile="clover_html" title="My Project" summary="true">

<format type="html"/>
</current>

</clover-report>

Generates a summary report, in HTML with a custom title. Note, the "outfile" argument
requires a directory instead of a filename.

<clover-report>
<current outfile="clover_html" title="Util Coverage">

<format type="html" orderBy="ElementsCoveredAsc"/>
</current>

</clover-report>

Generates a detailed coverage report in HTML with output ordered by total number of
covered elements, rather than percentage coverage.

<clover-report>
<current outfile="clover_html" title="My Project">

<format type="html"/>
<sourcepath>

<pathelement path="/some/other/location"/>
</sourcepath>

</current>
</clover-report>

Generates a sourcelevel report in HTML. Clover will search for source files in the directory
/some/other/location.

<tstamp>
<format property="report.limit" pattern="MM/dd/yyyy hh:mm aa"

offset="-1" unit="month"/>
</tstamp>
<clover-report>
<current outfile="report-current"

title="Coverage since ${report.limit}">

Clover 1.3.13 User Manual

Page 27
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

<fileset dir="src/main">
<date datetime="${report.limit}" when="after"/>

</fileset>
<format srclevel="true" type="html"/>

</current>
</clover-report>

This example generates a current coverage report for all files in the project that have changed
in the last month. Replacing the <date> selector with <contains text="@author
John Doe"/> would generate a coverage report for all code where John Doe is the author.

<clover-report>
<current outfile="report-current" title="Coverage">
<fileset dir="src">
<patternset refid="clover.files"/>

</fileset>
<format srclevel="true" type="html"/>

</current>
</clover-report>

In this example the standard Clover patternset is used to restrict the report to the currently
included source files. You could use this if you have changed the exclude or include
definitions in the <clover-setup> task and you have not removed the coverage database. It
will prevent classes, currently in the database but now excluded, from being included in the
report. It is prudent, however, to delete the coverage databse, coverage information and
recompile when you change these settings.

Examples of Historical Report Configurations

<clover-report>
<historical outfile="historical.pdf"

historyDir="clover_history">
</historical>

</clover-report>

Generates a historical report in PDF. Assumes that <clover-historypoint> has generated more
than one history file in the directory "clover_history". Writes the output to the file specified
in the outfile parameter.

<clover-report>
<historical outfile="two_months" title="My Project"

from="020101" to="020301" dateFormat="yyMMdd"
historyDir="clover_history">

<format type="html"/>
</historical>

</clover-report>

Generates a basic historical report in HTML for a certain time period. Clover will scan the
history dir and use any history points that fall within the requested time period. The outfile

Clover 1.3.13 User Manual

Page 28
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

attribute will be treated as a directory; a file historical.html will be written into this
directory. If the directory doesn't exist, it will be created.

<clover-report>
<historical outfile="report.pdf" title="My Project"

historyDir="clover_history">
<overview/>
<movers threshold="5%" range="20" interval="2w"/>

</historical>
</clover-report>

Generates a PDF historical report that only includes an overview section (showing summary
coverage at the last history point) and a movers table showing classes that have a code
coverage delta of greater than +- 5% over the two weeks prior to the last history point. Will
include at most 20 gainers and 20 losers.

3.4.4. <clover-historypoint>

Description

Records a coverage history point for use in historical coverage reports.

Parameters

Attribute Description Required

historyDir The directory where historical
data is stored.

Yes

initstring The initstring of the coverage
database.

No; If not specified here, you
must ensure <clover-setup> is
called prior the execution of this
task.

date Specifies an override date for
this history point. This allows
for generation of past historical
data for a project.

No; defaults to the timestamp
of the current coverage data.

dateFormat Specifies a date format string
for parsing the "date" attribute.
The string must contain a valid
java.text.SimpleDateFormat
pattern.

No; default set to
java.text.SimpleDateFormat
using the default pattern and
date format symbols for the
default locale.

filter comma or space separated list
of contexts to exclude when

No

Clover 1.3.13 User Manual

Page 29
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

generating the historypoint.
See Using Contexts.

span Specifies how far back in time
to include coverage recordings
from since the last Clover build.
See Using Spans.

No; Defaults to "0s".

Nested elements of<clover-historypoint>

<fileset>

<clover-historypoint> supports nested filesets which control which source files are to be
included in a historypoint. Only classes which are from the source files in the fileset are
included in the historypoint. This allows historypoints to focus on certain packages or
particular classes. By using Ant's fileset selectors, more complicated selections are possible,
such as the files which have recently changed, or files written by a particular author.

Examples

<clover-historypoint historyDir="clover-historical"/>

Records a history point into the directory PROJECT_DIR/clover-historical

<clover-historypoint historyDir="clover-historical"
date="010724120856"

dateFormat="yyMMddHHmmss"/>

Records a history point, with the effective date of 24/07/01 12:08:56

3.4.5. <clover-check>

Description

Tests project/package code coverage against criteria, optionally failing the build if the criteria
are not met. This task needs to be run after coverage has been recorded.

Parameters

Attribute Description Required

Clover 1.3.13 User Manual

Page 30
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

target The target percentage total
coverage for the project. e.g.
"10%"

At least one of these, unless
nested <package> elements
are specified.

methodTarget The target percentage method
coverage for the project.

statementTarget The target percentage
statement coverage for the
project.

conditionalTarget The target percentage
conditional coverage for the
project.

initstring The initstring of the coverage
database.

No; If not specified here, you
must ensure <clover-setup> is
called prior the execution of this
task.

haltOnFailure Specifies if the build should be
halted if the target is not met.

No; default is "false"

failureProperty Specifies the name of a
property to be set if the target is
not met. If the target is not met,
the property will contain a text
description of the failure(s).

No

filter comma or space separated list
of contexts to exclude when
calculating coverage. See
Using Contexts.

No

span Specifies how far back in time
to include coverage recordings
from since the last Clover build.
See Using Spans.

No; Defaults to "0s".

Nested elements of <clover-check>

<package>

Specifies a target for a named package.

Parameters

Attribute Description Required

Clover 1.3.13 User Manual

Page 31
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

name The name of the package. exactly one of these

regex Regular expression to match
package names.

target The target percentage total
coverage for the package. e.g.
"10%"

At least one of these.

methodTarget The target percentage method
coverage for the package.

statementTarget The target percentage
statement coverage for the
package.

conditionalTarget The target percentage
conditional coverage for the
package.

Examples

<clover-check target="80%"/>

Tests if total percentage coverage is at least 80%. If not, a message is logged and the build
continues.

<clover-check target="80%"
haltOnFailure="true"/>

Tests if total percentage coverage is at least 80%. If not, a message is logged and the build
fails.

<clover-check target="80%"
failureProperty="coverageFailed"/>

Tests if total percentage coverage is at least 80%. If not, a message is logged and the project
property coverageFailed is set.

<clover-check target="80%"
<package name="com.acme.killerapp.core" target="70%"/>
<package name="com.acme.killerapp.ai" target="40%"/>

</clover-check>

Tests:

• total percentage coverage for project is at least 80%
• total percentage coverage for package com.acme.killerapp.core is at least 70%
• total percentage coverage for package com.acme.killerapp.ai is at least 40%

Clover 1.3.13 User Manual

Page 32
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

If any of these criteria are not met, a message is logged and the build continues.

<clover-check target="80%"
filter="catch">

<package name="com.acme.killerapp.core" target="70%"/>
<package name="com.acme.killerapp.ai" target="40%"/>

</clover-check>

As above, but don't include coverage of catch blocks when measuring criteria.

<clover-check target="80%" conditionalTarget="90%"
filter="catch">

<package name="com.acme.killerapp.core" target="70%"/>
<package name="com.acme.killerapp.ai" target="40%"/>

</clover-check>

As previous example, but also ensure project conditional coverage is at least 90%.

<clover-check>
<package regex="com.acme.killerapp.core.*" target="70%"/>

</clover-check>

Tests if coverage for com.acme.killerapp.core and all subpackages is atleast 70%.

3.4.6. <clover-log>

Description

Reports coverage information to the console at different levels.

Parameters

Attribute Description Required

initstring The initstring of the coverage
database.

No; If not specified here, you
must ensure <clover-setup> is
called prior the execution of this
task.

level Controls the level of detail
included in the report. Valid
values are summary, class,
method, statement

No; defaults to "summary"

filter comma or space separated list
of contexts to ignore when
calculating coverage. See
Using Contexts.

No

Clover 1.3.13 User Manual

Page 33
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

span Specifies how far back in time
to include coverage recordings
from since the last Clover build.
See Using Spans.

No; Defaults to "0s".

Nested elements

<Package>

Specifies a named package to restrict the report to. Multiple <package> elements can be
specified.

Parameters

Attribute Description Required

name The name of the package to
include.

Yes

<Sourcepath>

Specifies a Ant path that Clover should use when looking for source files.

Examples

<clover-log/>

Prints a summary of code coverage to the console.

<clover-log>
<package name="com.acme.killerapp.core"/>

</clover-log>

Prints a summary of code coverage for the package com.acme.killerapp.core to the
console.

<clover-log level="statement">
<package name="com.acme.killerapp.core"/>

</clover-log>

Prints detailed (source-level) code coverage information for the package
com.acme.killerapp.core to the console.

<clover-log level="statement"
filter="catch">

<package name="com.acme.killerapp.core"/>

Clover 1.3.13 User Manual

Page 34
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

</clover-log>

As above, but catch blocks will not be considered in coverage reporting.

<clover-log level="statement">
<sourcepath>

<pathelement path="/some/other/location"/>
</sourcepath>

</clover-log>

Prints source-level coverage report to the console. Clover will look for source files in the
directory /some/other/location.

3.4.7. <clover-view>

Description

Launches the Swing coverage viewer. The Ant build will pause until the viewer is closed.

Parameters

Attribute Description Required

initstring The initstring of the coverage
database.

No; If not specified here, you
must ensure <clover-setup> is
called prior the execution of this
task.

span Specifies how far back in time
to include coverage recordings
from since the last Clover build.
See Using Spans.

No; Defaults to "0s".

tabwidth Specifies tabwidth to use when
rendering source files.

No;

Nested elements

<sourcepath>

Specifies a Ant path that Clover should use when looking for source files.

Examples

<clover-view/>

Launches the viewer.

Clover 1.3.13 User Manual

Page 35
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

<clover-view>
<sourcepath>

<pathelement path="/some/other/location"/>
</sourcepath>

</clover-view>

Launches the viewer. Clover will look for source files in the directory /some/other/location

3.4.8. <clover-clean>

Description

Delete the coverage database and associated coverage recording files.

Parameters

Attribute Description Required

initstring The initstring of the database to
clean.

No; If not specified here, you
must ensure <clover-setup> is
called prior the execution of this
task.

keepdb Keep the coverage database
file. If "false", the coverage
database will be deleted.
("true"/"false").

No; defaults to "true"

verbose Show the name of each deleted
file ("true"/"false").

No; defaults to "false"

haltOnError Controls whether an error (such
as a failure to delete a file)
stops the build or is merely
reported to the screen
("true"/"false").

No; defaults to "false"

Examples

<clover-clean/>

Deletes all of the coverage recordings.

<clover-clean verbose="true"/>

Deletes all of the coverage recordings, printing out a log statement for each file deleted.

Clover 1.3.13 User Manual

Page 36
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

<clover-clean keepdb="false"/>

Deletes the coverage database and all of the coverage recordings.

3.4.9. <clover-merge>

Description

Merges several Clover databases to allow for multi-project reports to be generated. To use
with reporting tasks such as <clover-report>, <clover-historypoint> and <clover-view> you
can use the optional "initstring" attribute on these tasks to specify the value of the merged
database.

Parameters

Attribute Description Required

initString The initString of the new
coverage database. This has to
be a writeable filepath.

Yes

Nested elements of <clover-merge>

<cloverDb>

Specifies a Clover database to merge.

Parameters

Attribute Description Required

initString the initString of the database to
merge.

Yes

span Specifies how far back in time
to include coverage recordings
from since the last Clover build
for this database.

No; defaults "0 seconds"

<cloverDbSet>

Specifies an Ant FileSet of Clover databases to merge. Apart from those shown below,
parameters and subelements are the same as for an Ant FileSet.

Clover 1.3.13 User Manual

Page 37
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://ant.apache.org/manual/CoreTypes/fileset.html

Parameters

Attribute Description Required

span Specifies how far back in time
to include coverage recordings
from since the last Clover build
for all databases matched.

No; defaults "0 seconds"

Examples

<clover-merge initString="mergedcoverage.db">
<cloverDb initString="projectAcoverage.db"/>
<cloverDb initString="projectBcoverage.db" span="30 mins"/>

</clover-merge>

Produces a merged database containing the measured coverage of project A and project B.

<clover-merge initString="mergedcoverage.db">
<cloverDbSet dir="/home/projects" span="30 mins">

<include name="**/coverage.db"/>
</cloverDbSet>

</clover-merge>

Produces a merged database containing the measured coverage of all databases found under
/home/projects.

3.5. Sharing Report Formats

You can share report formats across a number of reports. This allows you to standardise on a
set of report formats and use these for all your reports.

Standalone format elements are created using the <clover-format> type. Standalone
formats elements are not compatible with Ant 1.4.1. You require at least Ant 1.5.1 to
use this feature. These standalone types support the same attributes and elements as the
internal <format> elements of the <clover-report> task. You name the format using
the standard ant "id" attribute.

In order to make the standalone format element available for use in your project, you need to
add a typedef first:

<typedef resource="clovertypes"/>

The following code declares two report formats

<clover-format id="std.format" srclevel="true" type="pdf"/>

Clover 1.3.13 User Manual

Page 38
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

<clover-format id="bw.format" bw="true" srclevel="true" type="pdf"/>

In this example, the first format is for source level, PDF reports. It is named "std.format".
The second format, "bw.format", is essentially the same except it specifies black and white
output.

Once the format is declared with an identifier, it can be used by reference with a "refid"
attribute. This is shown in the following report example

<clover-report>
<current summary="yes" outfile="report-current.pdf"

title="Ant Coverage">
<format refid="std.format"/>

</current>
</clover-report>

This report, a summary report, uses the "std.format" format defined above. The refid values
in the <format> elements can be an Ant property allowing selection of the report format at
build time. The following is a complete example

<target name="report">
<clover-format id="std.format" srclevel="true" type="pdf"/>
<clover-format id="bw.format" bw="true" srclevel="true" type="pdf"/>
<property name="format" value="std.format"/>
<clover-report>
<current summary="yes" outfile="report-current.pdf"

title="Ant Coverage">
<format refid="${format}"/>

</current>
<historical historydir="clover-hist" outfile="report-history.pdf"

title="Ant Historical Coverage">
<format refid="${format}"/>

</historical>
</clover-report>
</target>

Here, we are generating two reports, which share a format. The format defaults to the
standard format, a colour report. This default can be overriden from the command line. To
generate black and white reports you would use:
ant report -Dformat=bw.format

Clover 1.3.13 User Manual

Page 39
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

4. IDE Plugin Guides

4.1. Clover IDE Plugins

Clover provides fully integrated plugins for many popular Integrated Development
Environments. The plugins allow you to measure and view code coverage without leaving
the IDE. They are also compatible Clover for Ant.

4.1.1. Plugin Guides

• Eclipse
• IntelliJ 3.x
• IntelliJ 4.x
• IntelliJ 5.x
• JBuilder
• Netbeans
• JDeveloper

4.2. Eclipse Plugin Guide

Plugin Version 1.2.10

Note:
This plugin has been tested with Eclipse 2.1, 2.1.1, 2.1.2, 3.0, 3.1, and 3.2.x ; using JDKs 1.3.x, JDKs 1.4.x, and JDKs 1.5.x.
The plugin has also been tested on WSAD 5.1 (which is based on Eclipse 2.1.1).
This plugin will not work with WebSphere Studio Application Developer v5.0 (WSAD v5.0 is based upon Eclipse 2.0.2).

4.2.1. Overview

The Clover Eclipse Plugin allows you to instrument your Java code easily from within the
Eclipse Java IDE, and to view your coverage results inside Eclipse.

4.2.2. Caveats / Known problems

Please be aware of the following when using this version of the plugin.

• This plugin may not work correctly if you have configured your Eclipse project so that
the Java source and output directories are the same.

• When compiling your Java project with the Clover plugin, you must add and use a Java
Development Kit (JDK) to your list of Installed JRE locations, or give the Clover plugin
a JDK_HOME override value. (see below).

Clover 1.3.13 User Manual

Page 40
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://www.eclipse.org/

• This plugin will not work with WebSphere Studio Application Developer v5.0 (WSAD
v5.0 is based upon Eclipse 2.0.2).

• There have been some reported problems when using the plugin with WSAD J2EE
projects, where the build-path contains .JARs that are embedded in an .EAR or .WAR.
This issue is being investigated and a fix is slated for the next release.

4.2.3. Installation

1 Locating your Eclipse plugin directory

You will need to locate where you installed Eclipse on your system. The rest of this
document will refer to this location as ECLIPSE_HOME.

2 Removing previous versions of the plugin

It is important to remove previous version of the Clover Eclipse plugin.

• Go to to the ECLIPSE_HOME/plugins directory.
• Remove any directory named com.cenqua.clover*

3 Installing the plugin

• Once you have downloaded the Clover Eclipse plugin .zip file, extract it to a temporary
location on your drive. This will create a directory named com.cenqua.clover_x.x

• Copy this directory to the ECLIPSE_HOME/plugins directory. That is, you should
end up the directory ECLIPSE_HOME/plugins/com.cenqua.clover_x.x

4 Installing the license

• If you don't have one already, you will need to download a clover.license file to
activate the plugin. A free evaluation license is available from here.

• Copy the clover.license file into the
ECLIPSE_HOME/plugins/com.cenqua.clover_x.x directory.

5 Start Eclipse

Next time you start Eclipse, the Clover plugin will be available.

4.2.4. Using the plugin

Setting up a JDK

Note:
When compiling your Java project with the Clover plugin, you must specify a JDK for Clover to use.

Clover 1.3.13 User Manual

Page 41
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://www.cenqua.com/licenses.jspa

There are two ways to instruct the Clover plugin which JDK it should use.

1. Set a JDK_HOME override setting on a per-project basis. In the Compilation tab of the
Clover section of your Project properties, enter a value such as "C:\j2sdk1.4.2" into the
JDK_HOME override field.

2. Globally choose a JDK instead of a JRE as your Default JRE.
• In Eclipse, choose "Windows | Preferences" then select "Java / Installed JREs".
• Click "Add..." and enter the path to your JDK in the "JRE home directory" field. For

example, enter "C:\j2sdk1.4.2".
• Choose a name (such as "JDK1.4.2") and click "OK".
• Ensure you have this JDK checked as the default build JRE.

Activating the Clover Eclipse plugin

The Clover Eclipse plugin can be activated in any Eclipse project when using the Java (JDT)
perspective.

• Open up the project's properties, by using "Project | Properties" or right-clicking on the
project in the Package Explorer.

• Select the "Clover" page.
• Toggle the "Enable Clover plugin in the project" checkbox. You can leave the Clover

options at the defaults for now.
• When you hit OK, the Clover Viewer tool should appear on your workbench.

Clover 1.3.13 User Manual

Page 42
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover Properties

The Clover Viewer tool

The Clover Viewer tool allows you to control Clover's instrumentation of your Java projects,
and shows you the coverage statistics for each project. The tree shows the package and class
coverage information for each project. Summary statistics are displayed below the tree for
the selected project/package/class.

Clover 1.3.13 User Manual

Page 43
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover 1.3.13 User Manual

Page 44
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover Viewer

The Clover Viewer is automatically added to the workbench when you enable Clover for
your project. If the viewer is closed, you can open it again using "Window | Show View |
Other..." and selecting "Clover | Clover View".

The viewer allows the following actions:

• Show coverage. Toggles the display of coverage information in the Java editors and in
the Tasks list.

• Refresh Coverage Data. Re-loads from disk the Clover coverage data for the selected
project.

• Delete Coverage Data. Deletes the recordered coverage data for the selected project.
• Compile with Clover. Toggles the use of Clover instrumentation when Eclipse compiles

the selected Java project.
• Context Filter.... Allows you to specify what coverage contexts are shown in the Java

Editor.
• Generate Report.... Launches the report generation wizard that will take you through the

steps required to generate a Pdf, Html or Xml. report.
• Use Clover WorkingSet. Toggles the use of the Clover WorkingSet. This limits the files

Clover will consider when instrumenting and when showing coverage data. This is
particularly useful for large projects.

• Edit WorkingSet. Brings up a dialog for editing the Clover WorkingSet.
• Clear WorkingSet. Empties the Clover WorkingSet. This means Clover will not

consider any files while "Use Clover WorkingSet" is enabled.

Viewing Coverage Results

The Clover Eclipse plugin allows you to view Clover coverage data within the Eclipse IDE.
This may include coverage data created using Clover external to the Eclipse IDE, or
coverage data generated by the Clover Plugin internal to Eclipse.

Clover 1.3.13 User Manual

Page 45
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Markers

The Clover plugin shows coverage data in three ways:

• As a marker in the overview bar (right-hand side). This marker has a tooltip indicating
the coverage problem.

• As a marker in the vertical ruler (left-hand side). This marker has a tooltip indicating the
coverage problem.

• As a warning item in Eclipse Tasks list. If you do not want coverage warnings to appear
in the task list, you can filter them out using the Tasks list filter preferences. Note that

Clover 1.3.13 User Manual

Page 46
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

warnings associated with a file will appear in the Tasks list only for those files that are
currently opened by an editor.

Marker Filter

Instrumenting your code

You can use the Clover Eclipse plugin to instrument the Java source in your project each
time it is built. This option is activated on a per-project basis by toggling the "Compile with
Clover" button in the Clover Viewer.

Online help

Clover 1.3.13 User Manual

Page 47
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

The Clover Eclipse plugin includes help documentation integrated into the Eclipse help
system.

Help

Deactivating the Clover Eclipse plugin

You can disable Clover instrumentation using the "Compile with Clover" button, and you can
prevent coverage information from being displayed in the Java editors by toggling the "Show
Coverage" button.

But if you want to completely de-activate Clover support in a project, then un-check "Enable
Clover plugin in the project" on the Clover page of the project's properties dialog.

Disabling Clover in this way will require a full rebuild of that project. If this is undesirable
then you can simply toggle the "Compile with Clover" and "Show Coverage" options.

4.2.5. Configuration options

The Clover Eclipse plugin's configuration can be accessed in two places; a) from the
"Clover" page of a project's properties dialog (Project | Properties), and b) from the "Clover"

Clover 1.3.13 User Manual

Page 48
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

page of the workspace preferences (Window | Preferences).

Project Properties - Instrumentation Options

These options control how Clover instrumentation works when "Compile with Clover" is
selected.

Initstring
This controls where the Clover plugin stores (and looks for) the coverage
database. You may want to specify a "User specified" value if you want to view
Clover coverage data generated external to the Eclipse IDE.
Flush Policy
The Flush Policy controls how Clover writes coverage data to disk at runtime.
"Directed" is the default an means coverage data is written to disk when the JVM
exists. "Interval" allows you to specify that coverage data should be written out at
regular intervals. See Flush Policies.
Filtering Includes/Excludes
If you do not want all of your source instrumented, then you can control which
this using these two Ant patternsets. For example, you may prevent
instrumentation of files in the "remote" package using an "Excludes" value of
**/remote/*.java.

Project Properties - Compilation Options

These options allow you to specify how Clover will compile your instrumented files.

Fork compiler into separate JVM
If enabled, Clover will launch a separate JVM to compile your instrumented files.
Heap size of compiler JVM
The heap size of the forked JVM (in MB). Leave blank to use the default.

Project Properties - Filter Options

These options allow you to define custom coverage filters.

Name
The name for this context. Must be unique, a valid java identifier and not be one
of the reserved context names
Type
The type for this context. A method context type matches against method
signatures, and a statement context type against statement signatures.
Regexp
A Perl 5 Regexp that defines the context. This regexp should match the

Clover 1.3.13 User Manual

Page 49
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

signatures of the method/statement you wish to include in this context. Note that
when signatures are tested against this regexp, whitespace is normalised and
comments are ignored.

Note:
See Coverage Contexts for more information.

Clover Preferences

Clover 1.3.13 User Manual

Page 50
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover Preferences

Deleting existing coverage data
When your rebuild a project, Clover will ask you whether you want to delete the
existing coverage information. This section allows you to specify what the default
action should be, and whether Clover should prompt you at all.
Automatically refresh coverage data
If enabled, the plugin will check for updated coverage data at the frequency given
below. If it is not enabled, then you will need to use the "Refresh Coverge Data"
button to see newer coverage data.
Span
The span attribute allows you to control which coverage recordings are merged
to form a current coverage report. For more information, see Using spans

4.2.6. Large Projects

It is common for developers to work in different ways when working on an extremely large
project compared to small/medium sized projects. For example, doing a complete rebuild
then running all the unit tests can take hours for some projects. For this reason, some
developers may want to focus only on a few files or packages at a time. The Clover Eclipse
plugin has a Working-Set mode to assist in this style of development.

The Clover Working-Set

Eclipse has an inbuilt concept of a Working-Set, which allows you to specify a subset of the
Workspace that you want to consider. Clover can use one of these Working-Sets to:

• Limit the files that will be instrumented by the Clover plugin.
• Filter the files/packages/directories for which Clover will display coverage information.

This includes filtering the coverage statistics. For example, Clover will report 100%
coverage if just all the files in the Working-Set are covered.

Clover 1.3.13 User Manual

Page 51
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover 1.3.13 User Manual

Page 52
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover Viewer

The Clover Working-Set can be manipulated via the tool menu in the Clover Viewer and by
the context menu on files, packages and projects.

Add/Remove Working-Set

Clover 1.3.13 User Manual

Page 53
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Enabling the Clover Working-Set is a Workspace-wide setting; it affects all projects in
Eclipse. If you have an "Excludes" setting on a project (in the Clover section of the Project
Properties), then those files are excluded in addition to those excluded by the Working Set.
Similarly, if you have an "Includes" setting, then only those files that are included in both
this setting and the Working-Set are Instrumented by Clover.

4.2.7. Working with custom filters.

For the sake of this example, let us assume that we want to remove all private methods from
the coverage reports. How would we go about this?

• Open the configuration panel "Clover | Filters".
• Select the Add button to create a new Regexp Context Filter.
• Set the name to private.
• Since we are creating this filter to filter private 'methods', specify the Method type.
• We now need to define regular expression that will match all private method signatures.

That is, a regexp that will match any method with the private modifier. An example of
such a regexp is (.*)?private .*. Enter this regexp in the regexp field.

• When a filter has been newly created or edited, a (*) will be displayed next to its name.
This indicates that the filter is currently 'unavailable' for use. To make this new filter
available, you will need to run a clean build of your project. Once available, you will
notice the private filter appear in the Context Filter Dialog. You will now be able to
filter private methods out of your Clover coverage calulations and reports.

4.2.8. FAQ

Q: Why, when doing a build, do I get an error dialog with the message "Clover build
error. Error running javac.exe compiler"? Why do I need to configure a JDK instead of
a JRE for my project?

In order to compile your instrumented source code, the Clover Plugin needs to find the
"javac" command that comes with the JDK. The plugin does not use Eclipse's inbuild Java
Builder.

Q: I've run my tests, but coverage information does not show in Eclipse.

You may need to press the Refresh Button in the Clover tool window.

Q: Why can I only see coverage data for the last test case I executed? Why does my
coverage information disappear each time I compile a file?

By default, Clover will display the coverage information gathered since your last compile.
You can change how far back in time Clover will look for coverage data by setting the Span

Clover 1.3.13 User Manual

Page 54
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

parameter in the Clover page in the Workspace preferences (Window | Preferences).

4.3. Clover IDEA 3 Plugin UserGuide

Plugin Version 0.8 Beta

Note:
The Clover IDEA 3 Plugin is currently a beta version. The plugin has been tested with IntelliJ IDEA versions 3.0.x.

4.3.1. Overview

The Clover IDEA Plugin allows you to instrument your Java code easily from within the
IntelliJ IDEA 3.x Java IDE, and then view your coverage results inside IDEA.

Clover 1.3.13 User Manual

Page 55
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover IDEA plugin

4.3.2. Installing the plugin

To install the plugin:

1. shutdown any running instances of IDEA
2. remove any previous versions of the the clover plugin jar from IDEA_HOME/plugins.
3. copy CLOVER_HOME/lib/cloverIdeaPlugin.jar into the

IDEA_HOME/plugins directory, and restart IDEA.

4.3.3. Using the plugin

Clover 1.3.13 User Manual

Page 56
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Enabling the Clover Plugin for your project

Add cloverIdeaPlugin.jar to your project classpath:

• Open the project properties "File | Project Properties".
• In the "Paths" section, select the "Classpath" tab. Remove any old clover jars and add a

reference to cloverIdeaPlugin.jar (you must reference the
cloverIdeaPlugin.jar that you installed in IDEA_HOME/plugins).

(The cloverIdeaPlugin.jar needs to be in the classpath because it is needed at
runtime when you are running your unit tests. It is also needed when you are compiling
with Clover)

Building your Project with Clover

Clover works by pre-processing your Java files before they are compiled. This means that
when you want to measure coverage with Clover, you cannot use the standard IDEA
"Rebuild Project" or "Make Project" functionality. Instead, you need to use either "Clover |
Rebuild Project with Clover" (for a full rebuild), or "Clover | Make Project with Clover"
(builds only modified files). The "Make Project with Clover" action can also be launched
with the toolbar button

Clover Compile Button
.

Note:
Clover collects code coverage by instrumenting a copy of your Java files before they are compiled. If you "Build with Clover",
then re-compile some of your files normally with IDEA, those files will no longer be instrumented; and coverage will not be
collected for them until you do another "Build with Clover".

Build Options

Clover 1.3.13 User Manual

Page 57
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

build dialog

Show Compiler Console

Check this box to see output from the Clover build process.

Delete existing Coverage Data

(option only appears on a full rebuild) This option allows you to delete existing coverage
data and registry information before the build.

Show this dialog in future

Uncheck this box if you don't want this dialog appearing for future builds. You can enable
the dialog again via the Clover Project Properties screen.

Viewing Coverage Results

Once you have instrumented your code (see Building your Project with Clover), each time
you run your application or a unit-test Clover will record the code coverage. Once the
application or unit-test exits, the coverage information is available for viewing using IDEA.

The coverage information can be browsed using the Clover Tool Window. This presents the
data in a similar way to the existing Clover GUI Viewer.

The top pane of the Tool Window contains a class browser with inline coverage information:

Clover 1.3.13 User Manual

Page 58
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover class browser

The tool bar at the top of the browser contains the following buttons

• Flatten Packages. With this selected, only concrete packages are shown in the browser.
• Autoscroll to Source. With this selected, a single click on a class in the browser will

load the corresponding source file in an editor pane, with coverage info overlaid.
• Refresh. Reloads coverage data.
• Expand All. Expand all nodes in the browser.
• Collapse All. Collapse all nodes in the browser.
• Set Context Filter. Launches a dialog to set the context filter:

Clover 1.3.13 User Manual

Page 59
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Context Filter Dialog

The bottom pane of the Tool Window contains Coverage and other Metrics information for
the currently selected node in the browser:

Coverage info view

In addition, the plugin can annotate the Java code with the coverage information. This can be
turned on using the "Clover | Show Coverage" menu option, or by pressing the Show
Coverage

view coverage button
toolbar button.

editor pane with overlaid coverage information

Note:
If you do not have "Auto Coverage Refresh" enabled, you will need to press the Refresh Button in the Clover Tool Window to
see the updated coverage information.

Clover 1.3.13 User Manual

Page 60
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

If a source file has changed since a Clover build, then a warning will be displayed alerting you to fact that the inline coverage
information may not be accurate. The coverage hilighting will be yellow, rather than the red shown above.

4.3.4. Configuration Options

Configuration options for Clover are accessible on the Clover panel of the Project Properties
dialog.

Compilation options

Compiler configuration screen

Initstring

Clover 1.3.13 User Manual

Page 61
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

This section controls where the Clover coverage database will be stored. Select 'Automatic'
to have Clover manage this location for you (relative to your project directory). Select 'User
Specified' to nominate the path to the Clover coverage database. This is useful if you want to
use the plugin in conjunction with an Ant build that already sets the location of the Clover
coverage database.

Flush Policy

The Flush Policy controls how Clover writes coverage data to disk at runtime. See Flush
Policies.

Compilation with Clover

These settings control how the Java compiler operates when building your project with
Clover.

Filtering

Allows you to specify a comma separated list of set of Ant Patternsets that describe which
files to include and exclude in instrumentation. These options are the same as those described
in the <clover-setup> task.

Viewer options

Clover 1.3.13 User Manual

Page 62
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Viewer configuration screen

General

Controls the operation of the Clover tool window on the left-hand side of the IDE.

Context Filters

Allows you to specify contexts to ignore when viewing coverage information.

Source Highlighting

Allows you to specify colors used when displaying source level coverage information.

4.4. Clover IDEA 4 Plugin UserGuide

Clover 1.3.13 User Manual

Page 63
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Plugin Version 1.0.7

System Requirements: IntelliJ IDEA 4.5.4

4.4.1. Overview

The Clover IDEA Plugin allows you to instrument your Java code easily from within the
IntelliJ IDEA Java IDE, and then view your coverage results inside IDEA.

Clover IDEA plugin

4.4.2. Installing

If you have downloaded the Clover IDEA Plugin package from http://www.cenqua.com/, you
can install the plugin manually as follows:

Clover 1.3.13 User Manual

Page 64
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

1. shutdown any running instances of IDEA
2. remove any previous versions of the the clover plugin jar from

IDEA_HOME/config/plugins OR IDEA_HOME/plugins.
3. copy CLOVER_HOME/lib/clover-idea4.jar into the

IDEA_HOME/config/plugins directory, and restart IDEA.

Alternatively, if you have downloaded the plugin via the "File | Settings | IDE | Plugins"
interface, the plugin will be available after a restart.

Note:
The plugin installation directory has changed. For IDEA 4.0.x it was IDEA_HOME/plugins. For 4.5.x it is now
IDEA_HOME/config/plugins.

You will need a license to activate your plugin.

• Download your clover.license file from http://www.cenqua.com/licenses.jspa. Evaluation
licenses are available free of charge.

• Place the clover.license file next to the clover-idea4.jar file in either the
IDEA_HOME/config/plugins or IDEA_HOME/plugins directory.

4.4.3. Uninstalling

To uninstall the Clover IDEA Plugin:

1. shutdown any running instances of IDEA
2. delete the clover-idea4.jar file from its installation directory, either

IDEA_HOME/config/plugins OR IDEA_HOME/plugins.
3. restart IDEA

Alternatively, you can uninstall the Clover IDEA Plugin via the "File | Settings | IDE |
Plugins" interface. Just select the Clover IDEA Plugin from the list and click 'Uninstall
Plugin'. The uninstall will take affect after you restart IDEA.

4.4.4. Configuring your project

Add the clover jar to your 'project' classpath.

• Open the project properties "File | Settings | Project ".
• In the "Paths" section, select the "Libraries (Classpath)" tab. Remove any old clover jars

and add a reference to clover-idea4.jar you must reference the
clover-idea4.jar that you installed in IDEA_HOME/config/plugins).

4.4.5. Getting Started

This getting started guide will take you through the steps required to generate Clover

Clover 1.3.13 User Manual

Page 65
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

coverage for your project.

1. Ensure that you have added the clover plugin jar to your project library path.
2. Enable Clover, by selecting the 'Enable Clover' check box in the "File | Settings | Project |

Clover" interface.
3. Turn on clover instrumentation by selecting the toolbar item
4. Rebuild your project using any of the build mechanisms provided by IDEA.
5. Run your project by running the unit tests or some other means.
6. Refresh the latest coverage data by clicking the toolbar item.
7. View the project coverage data by selecting the toolbar item.

4.4.6. Viewing Coverage Results

Clover will record the code coverage information each time you run your application or a
unit-test. This coverage information is available for viewing using IDEA.

The coverage information can be browsed using the Clover Tool Window. This presents the
data in a similar way to the existing Clover GUI Viewer. The upper portion of the Tool
Window contains a class browser with inline coverage information:

Clover class browser
The tool bar at the top of the browser contains the following buttons:

• Flatten Packages. With this selected, only concrete packages are shown in the browser.
• Autoscroll to Source. With this selected, a single click on a class in the browser will

load the corresponding source file in an editor pane, with coverage info overlaid.
• Autoscroll from Source. With this selected, the coverage browser will track the

currently active source file in the editor pane.

Clover 1.3.13 User Manual

Page 66
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

• Show Coverage Summary. With this selected, the Coverage metrics (see below) will be
visible.

• Set Context Filter. Launches a dialog to set the context filter:

Context Filter Dialog
• Generate Clover Report. Launches the report generation wizard that will take you

through the steps required to generate a Pdf, Html or XML report.
• Refresh. Reloads coverage data.
• Delete. Delete the current coverage database.

The lower portion of the Tool Window contains various Metrics for the currently selected
node in the browser:

Clover 1.3.13 User Manual

Page 67
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Coverage info view
In addition, the plugin can annotate the Java code with the coverage information. This can be
turned on by pressing the Show Coverage toolbar button.

editor pane with overlaid coverage information

Note:
If you do not have "Auto Coverage Refresh" enabled, you will need to press the Refresh Button in the Main Toolbar or the
Clover Tool Window to see the updated coverage information.
If a source file has changed since a Clover build, then a warning will be displayed alerting you to fact that the inline coverage
information may not be accurate. The coverage hilighting will be yellow, rather than the red shown above.

4.4.7. Configuration Options

Compilation Options

Clover 1.3.13 User Manual

Page 68
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Configuration options for Clover are accessible on the Clover panel of the Project Properties
dialog. The first Tab on this panel provides compilation options:

Compilation Configuration Screen

Initstring

This section controls where the Clover coverage database will be stored. Select 'Automatic'
to have Clover manage this location for you (relative to your project directory). Select 'User

Clover 1.3.13 User Manual

Page 69
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Specified' to nominate the path to the Clover coverage database. This is useful if you want to
use the plugin in conjunction with an Ant build that already sets the location of the Clover
coverage database.

Flush Policy

The Flush Policy controls how Clover writes coverage data to disk at runtime. See Flush
Policies.

Instrumentation

Allows you to specify a comma separated list of set of Ant Patternsets that describe which
files to include and exclude in instrumentation. These options are the same as those described
in the <clover-setup> task.

Viewer options

The second Tab on the configuration panel provides viewing options;

Clover 1.3.13 User Manual

Page 70
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Viewer Configuration Screen

Refresh Policy

The Refresh Policy controls how the Clover Plugin monitors the Coverage Database for new
data. "Manual" is the default and means that you have to click button to refresh the coverage
data. "Automatic" means that the Clover Plugin will periodically check for new coverage
data for you.

Clover 1.3.13 User Manual

Page 71
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

General

Allows you to customize where coverage data is displayed within the IntelliJ IDE. Gutter
marks appear in the left hand gutter of the Java Source Editor. Source highlights appear
directly over your source code. Shortcut marks appear in the right hand gutter and allow you
to navigate directly to uncovered regions of code.

Source Highlighting

Allows you to fine tune the colours used Clover in its coverage reporting. The 'xxx highlight
colour' is used for Source Highlights and the 'xxx stripe colour' is used for Gutter and
Shortcut marks.

Filter Options

The third Tab on the configuration panel provides filter options;

Clover 1.3.13 User Manual

Page 72
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Filter Configuration Screen

Regexp Filters

The regexp filters allow you to define custom contexts to ignore when viewing coverage
information.

Working with regexp filters.

• Use , or to Create, Delete or Copy respectively the selected filter.

Clover 1.3.13 User Manual

Page 73
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

• All new and edited regexp filters will be shown in 'blue', indicating that they are currently
unavailable.

• To make a new/edited filter available, you need to delete the existing coverage database
using the button and rebuild your project/module.

Note:
See Coverage Contexts for more information.

Block Filters

Allows you to specify contexts to ignore when viewing coverage information. For example,
selecting the if context will remove if body (not the conditional) from the coverage reports.

4.4.8. Example: Creating a regexp context filter

For the sake of this example, let us assume that we want to remove all private methods from
the coverage reports. How would we go about this?

• Open the configuration panel "Settings | Clover | Filters".
• Select to create a new Regexp Context Filter.
• Set the name to private.
• Since we are creating this filter to filter private 'methods', specify the Method type.
• We now need to define regular expression that will match all private method signatures.

That is, a regexp that will match any method with the private modifier. An example of
such a regexp is (.*)?private .*. Enter this regexp in the regexp field.

• You will notice that the name of this new filter appears in blue. Blue is used to indicate
that the filter is either new or recently edited and therefore 'unavailable'. To make this
new filter available, select from the Main Toolbar and recompile your project. Once
active, you will notice the private filter appear in the Context Filter Dialog. You will
now be able to filter private methods out of your Clover coverage calulations and reports.

4.4.9. FAQ

Q: I've run my tests, but coverage information does not show in IDEA

A: If you do not have "Auto Coverage Refresh" enabled, you will need to press the Refresh
Button in the Clover Tool Window.

Q: When I compile with Clover instrumentation enabled, I get the following error:
Error: line (31) package com_cenqua_clover does not exist

A: You need to add the clover-idea4.jar file 'each' of your modules classpaths.

Clover 1.3.13 User Manual

Page 74
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Q: I have the Clover plugin enabled, but my files are not being instrumented.

A: As of v0.9.1, there is a toggle button on the main IDEA Toolbar for enabling and
disabling instrumentation. You will need to ensure that this toggle button is enabled .

Q: When I compile my program I get the stack trace
java.lang.IllegalArgumentException: Prefix string too short. Whats going on?

A:There is an known issue within IDEA that is triggered by the Clover integration. This issue
relates to the size of the project name. If its less then 3 characters, then you see the exception
that you are seeing. The only known 'workaround' for this issue is increasing the length of
your project name.

Q: I have an enabled Regexp Filter that does not seem to be filtering.

A: Have you checked your regexp? It may be that your regexp is not matching the
methods/statements that you expect. See Coverage Contexts for more information about
Regexp Contexts.

A: Try reseting the current context filter and then re-enabling them. There is a known
scenario where regexp filters are not being applied to the coverage data when they are
enabled at activation time.

4.5. Clover IDEA5/6 Plugin UserGuide

Plugin versions: 5-1.0.7, 6-1.0

System Requirements: IntelliJ IDEA 5.x, 6.x

4.5.1. Overview

The Clover IDEA Plugin allows you to instrument your Java code easily from within the
IntelliJ IDEA Java IDE, and then view your coverage results inside IDEA.

Clover 1.3.13 User Manual

Page 75
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover IDEA plugin

4.5.2. Installing

If you have downloaded the Clover IDEA Plugin package from http://www.cenqua.com/, you
can install the plugin manually as follows:

1. shutdown any running instances of IDEA
2. remove any previous versions of the the clover plugin jar from

IDEA_HOME/config/plugins OR IDEA_HOME/plugins.
3. copy CLOVER_HOME/lib/clover-idea5.jar into the

IDEA_HOME/config/plugins directory, and restart IDEA.

Alternatively, if you have downloaded the plugin via the "File | Settings | IDE | Plugins"
interface, the plugin will be available after a restart.

Clover 1.3.13 User Manual

Page 76
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

You will need a license to activate your plugin.

• Download your clover.license file from http://www.cenqua.com/licenses.jspa. Evaluation
licenses are available free of charge.

• Place the clover.license file next to the clover-idea5.jar file in either the
IDEA_HOME/config/plugins or IDEA_HOME/plugins directory.

4.5.3. Uninstalling

To uninstall the Clover IDEA Plugin:

1. shutdown any running instances of IDEA
2. delete the clover-idea5.jar file from its installation directory, either

IDEA_HOME/config/plugins OR IDEA_HOME/plugins.
3. restart IDEA

Alternatively, you can uninstall the Clover IDEA Plugin via the "File | Settings | IDE |
Plugins" interface. Just select the Clover IDEA Plugin from the list and click 'Uninstall
Plugin'. The uninstall will take affect after you restart IDEA.

4.5.4. Configuring your project

Add the clover jar to your 'project' classpath.

• Open the project properties "File | Settings | Project ".
• In the "Paths" section, select the "Libraries (Classpath)" tab. Remove any old clover jars

and add a reference to clover-idea5.jar you must reference the
clover-idea5.jar that you installed in IDEA_HOME/config/plugins).

4.5.5. Getting Started

This getting started guide will take you through the steps required to generate Clover
coverage for your project.

1. Ensure that you have added the clover plugin jar to your project library path.
2. Enable Clover, by selecting the 'Enable Clover' check box in the "File | Settings | Project |

Clover" interface.
3. Turn on clover instrumentation by selecting the toolbar item
4. Rebuild your project using any of the build mechanisms provided by IDEA.
5. Run your project by running the unit tests or some other means.
6. Refresh the latest coverage data by clicking the toolbar item.
7. View the project coverage data by selecting the toolbar item.

4.5.6. Viewing Coverage Results

Clover 1.3.13 User Manual

Page 77
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover will record the code coverage information each time you run your application or a
unit-test. This coverage information is available for viewing using IDEA.

The coverage information can be browsed using the Clover Tool Window. This presents the
data in a similar way to the existing Clover GUI Viewer. The upper portion of the Tool
Window contains a class browser with inline coverage information:

Clover class browser
The tool bar at the top of the browser contains the following buttons:

• Flatten Packages. With this selected, only concrete packages are shown in the browser.
• Autoscroll to Source. With this selected, a single click on a class in the browser will

load the corresponding source file in an editor pane, with coverage info overlaid.
• Autoscroll from Source. With this selected, the coverage browser will track the

currently active source file in the editor pane.
• Show Coverage Summary. With this selected, the Coverage metrics (see below) will be

visible.
• Set Context Filter. Launches a dialog to set the context filter:

Clover 1.3.13 User Manual

Page 78
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Context Filter Dialog
• Generate Clover Report. Launches the report generation wizard that will take you

through the steps required to generate a Pdf, Html or XML report.
• Refresh. Reloads coverage data.
• Delete. Delete the current coverage database.

The lower portion of the Tool Window contains various Metrics for the currently selected
node in the browser:

Clover 1.3.13 User Manual

Page 79
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Coverage info view
In addition, the plugin can annotate the Java code with the coverage information. This can be
turned on by pressing the Show Coverage toolbar button.

editor pane with overlaid coverage information

Note:
If you do not have "Auto Coverage Refresh" enabled, you will need to press the Refresh Button in the Main Toolbar or the
Clover Tool Window to see the updated coverage information.
If a source file has changed since a Clover build, then a warning will be displayed alerting you to fact that the inline coverage
information may not be accurate. The coverage hilighting will be yellow, rather than the red shown above.

4.5.7. Configuration Options

Compilation Options

Clover 1.3.13 User Manual

Page 80
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Configuration options for Clover are accessible on the Clover panel of the Project Properties
dialog. The first Tab on this panel provides compilation options:

Compilation Configuration Screen

Initstring

This section controls where the Clover coverage database will be stored. Select 'Automatic'
to have Clover manage this location for you (relative to your project directory). Select 'User

Clover 1.3.13 User Manual

Page 81
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Specified' to nominate the path to the Clover coverage database. This is useful if you want to
use the plugin in conjunction with an Ant build that already sets the location of the Clover
coverage database.

Flush Policy

The Flush Policy controls how Clover writes coverage data to disk at runtime. See Flush
Policies.

Instrumentation

Allows you to specify a comma separated list of set of Ant Patternsets that describe which
files to include and exclude in instrumentation. These options are the same as those described
in the <clover-setup> task.

Viewer options

The second Tab on the configuration panel provides viewing options;

Clover 1.3.13 User Manual

Page 82
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Viewer Configuration Screen

Refresh Policy

The Refresh Policy controls how the Clover Plugin monitors the Coverage Database for new
data. "Manual" is the default and means that you have to click button to refresh the coverage
data. "Automatic" means that the Clover Plugin will periodically check for new coverage
data for you.

Clover 1.3.13 User Manual

Page 83
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

General

Allows you to customize where coverage data is displayed within the IntelliJ IDE. Gutter
marks appear in the left hand gutter of the Java Source Editor. Source highlights appear
directly over your source code. Shortcut marks appear in the right hand gutter and allow you
to navigate directly to uncovered regions of code.

Source Highlighting

Allows you to fine tune the colours used Clover in its coverage reporting. The 'xxx highlight
colour' is used for Source Highlights and the 'xxx stripe colour' is used for Gutter and
Shortcut marks.

Filter Options

The third Tab on the configuration panel provides filter options;

Clover 1.3.13 User Manual

Page 84
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Filter Configuration Screen

Regexp Filters

The regexp filters allow you to define custom contexts to ignore when viewing coverage
information.

Working with regexp filters.

• Use , or to Create, Delete or Copy respectively the selected filter.

Clover 1.3.13 User Manual

Page 85
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

• All new and edited regexp filters will be shown in 'blue', indicating that they are currently
unavailable.

• To make a new/edited filter available, you need to delete the existing coverage database
using the button and rebuild your project/module.

Note:
See Coverage Contexts for more information.

Block Filters

Allows you to specify contexts to ignore when viewing coverage information. For example,
selecting the if context will remove if body (not the conditional) from the coverage reports.

4.5.8. Example: Creating a regexp context filter

For the sake of this example, let us assume that we want to remove all private methods from
the coverage reports. How would we go about this?

• Open the configuration panel "Settings | Clover | Filters".
• Select to create a new Regexp Context Filter.
• Set the name to private.
• Since we are creating this filter to filter private 'methods', specify the Method type.
• We now need to define regular expression that will match all private method signatures.

That is, a regexp that will match any method with the private modifier. An example of
such a regexp is (.*)?private .*. Enter this regexp in the regexp field.

• You will notice that the name of this new filter appears in blue. Blue is used to indicate
that the filter is either new or recently edited and therefore 'unavailable'. To make this
new filter available, select from the Main Toolbar and recompile your project. Once
active, you will notice the private filter appear in the Context Filter Dialog. You will
now be able to filter private methods out of your Clover coverage calulations and reports.

4.5.9. FAQ

Q: I've run my tests, but coverage information does not show in IDEA

A: If you do not have "Auto Coverage Refresh" enabled, you will need to press the Refresh
Button in the Clover Tool Window.

Q: When I compile with Clover instrumentation enabled, I get the following error:
Error: line (31) package com_cenqua_clover does not exist

A: You need to add the clover-idea5.jar file 'each' of your modules classpaths.

Clover 1.3.13 User Manual

Page 86
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Q: I have an enabled Regexp Filter that does not seem to be filtering.

A: Have you checked your regexp? It may be that your regexp is not matching the
methods/statements that you expect. See Coverage Contexts for more information about
Regexp Contexts.

A: Try reseting the current context filter and then re-enabling them. There is a known
scenario where regexp filters are not being applied to the coverage data when they are
enabled at activation time.

4.6. Clover Netbeans Module

Plugin Version 0.5.1.02

Note:
The Clover Netbeans Module is currently a beta version. The module has been tested against Netbeans 3.5

4.6.1. Overview

The Clover Netbeans Module allows you to instrument your Java code easliy from within the
Netbeans Java IDE, and immediately view your coverage results within the IDE.

Clover 1.3.13 User Manual

Page 87
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://www.netbeans.org/

Clover Netbeans Plugin

4.6.2. Installing the Module

Install the Clover Netbeans Module using the Update Center.

• Open the Update Center Wizard by selecting "Tools | Update Center".
• Select the "Install manually" option and follow the onscreen instructions (The Clover

Netbeans Module is located in the lib/clover-netbeans.nbm file).

4.6.3. Configuring the Module

Add clover-netbeans.jar to your project classpath by mounting the clover-netbeans.jar.

• Open the mount filesystem wizard "File | Mount Filesystem".

Clover 1.3.13 User Manual

Page 88
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

• Select "Archive Files" and "Next"
• Select the clover.jar located in either the modules subdirectory of your user directory, OR

if the module is installed as 'global', then the modules subdirectory of the NB Installation
directory

(The clover-netbeans.jar needs to be in the classpath because it is needed at runtime when
you are running your unit tests. It is also needed when you are compiling with Clover)

4.6.4. Using the Module

Clover instruments your code by pre-processing your Java files prior to compilation. This
means that you will need to select "Clover Instrumentation" as your Default Compiler for
Java Sources. You can do this by the following steps.

• Select the "Build with Clover" toggle button

Compile with clover button
in the Clover Toolbar

Alternatively, the following option is equivalent.

• You can modify the Default Compiler through the "Tools | Options" interface. Select
"Options | Editing | Java Sources" and select "Clover Instrumentation" as the Default
Compiler property.

Now, whenever you Compile or Build your source, it will be instrumented by Clover. This
includes the "Project | Build Project" menu item, and the build/compile options available
through the context sensitive right-click popup menus.

Build Options

Build with clover button
Rebuild Coverage

This option allows you to delete existing coverage data, and rebuild the project using the
latest configuration and available source. Use this when the coverage database has become
'out-of-sync' with the project as a result of java sources being deleted, or excludes
configurations changing.

4.6.5. Viewing Coverage Results

Once you are instrumenting your code, Clover will gather code coverage information

Clover 1.3.13 User Manual

Page 89
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

whenever you execute your code. This information can be viewed in the form of a clover
coverage browser and annotations of your source file.

Coverage Browser

The top pane of the Clover Coverage Tab contains a class browser with inline coverage
information:

Clover class browser

The tool bar at the top of this browser contains the following options:

•

tool bar icon
Flatten Packages. With this selected, only concrete packages are shown in the browser.

•

tool bar icon
Refresh. Reloads coverage data. This button is disabled when "Auto Refresh" is active.

The bottom pane of the Clover Coverage Tab contains Coverage and other Metrics
information for the currently selected node in the browser.

Clover 1.3.13 User Manual

Page 90
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Coverage info view

Inline source annotation

In addition, the plugin can annotate the Java source with the coverage information in the
editor pane. This is available whenever the open source file has associated coverage data.
The annotations are controlled via a toolbar in the editor pane

editor tool bar
. These toolbar buttons allow you to:

•

editor tool bar icon
Move to the previous uncovered line

•

editor tool bar icon
Toggle display of annotations

•

editor tool bar icon
Move to the next uncovered line

Clover 1.3.13 User Manual

Page 91
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

editor pane with overlaid coverage information

To ensure that the presented coverage information is up-to-date, either tell Clover to refresh
by selecting the "Refresh" button in the Clover Coverage Tab OR configure clover to
periodically check for updated coverage information for you.

When the coverage information becomes out of date, the inline source annotations change to
yellow.

editor pane with overlaid coverage information

4.6.6. Configuration

You will find Clover Configuration Options within the Netbeans Options Viewer.

• "Building | Compiler Types | Clover Instrumentation"
• "IDE Configuration | Server And External Tool Settings | Clover Settings"

Clover Instrumentation

Initstring

Clover 1.3.13 User Manual

Page 92
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

This section controls where the Clover coverage database will be stored. If left blank, Clover
will manage this location for you (relative to your project directory). Otherwise, you may
nominate the path to the Clover coverage database. This is useful if you want to use the
plugin in conjunction with an Ant build that already sets the location of the Clover coverage
database.

Flush Policy

The Flush Policy controls how Clover writes coverage data to disk at runtime. See Flush
Policies.

View Settings

Auto Refresh

The Auto Refresh control allows you to enable/disable Clovers automatic coverage update
monitoring. When set to true, Clover will automatically refresh coverage data. The refresh
interval can be managed via the "Refresh interval" setting.

Refresh interval

The Refresh interval value, specifies, in milliseconds, the time interval Clover will use when
automatically checking for coverage updates. See also Auto Refresh.

Show Summary

The Show Summary control allows you to show/hide the Coverage Summary bar in the
Clover Toolbar. This summary bar provides you a graphical indication of your coverage for
the entire project.

4.6.7. FAQ

Q: Ive run my tests, but coverage information is not being displayed in the IDE:

A:You will need to either select "Auto Refresh" to true, or select reload

reload icon

Q: I only see coverage data for the last test case I executed.:

A: Clover will display the coverage information gathered from your last test run. This means,

Clover 1.3.13 User Manual

Page 93
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

that if you run each of your tests individually, then only the coverage from the last test
executed will be shown. Support for aggregating multiple test runs is supported via spans, to
be included in a future release.

Q: I have an existing Ant build script with clover integration. Can I view the coverage
information within Netbeans:

A: By setting the "InitString" property on "Clover Instrumentation" to an existing coverage
database (one maintained by an Ant build script for example), you can access all of the
viewing features supported by the plugin. Just make sure that you have the source files for
this coverage data mounted. You can then safely make changes to your source within
Netbeans, build and run your tests with Ant, and the view the coverage results with Clover. If
you are going to take this approach, it is best to ensure that the "Build with Clover" toggle
button

Compile with Clover
is NOT selected.

Q: My source files will not compile:

A:Ensure that you have the clover-netbeans.jar in your project classpath.

4.6.8. Known Issues

• Use Class Include/Exclude does not work.
• It is not expected that future releases will be backward compatible with this release.
• A problem exists with "Auto Refresh" where it will not refresh coverage data after an

IDE restart. The coverage information will need to change before the coverage data will
be updated.

4.7. JBuilder Plugin Guide

Plugin version 1.0

System Requirements: JBuilder 9 (Enterprise Edition), JBuilder X (Enterprise Edition),
JBuilder 2005 (Enterprise Edition)

4.7.1. Overview

The Clover JBuilder Plugin allows you access the functionality of Clover from within your
IDE. Clover will instrument your java source and show you your test coverage, highlighting
areas of code that have not been executed.

Clover 1.3.13 User Manual

Page 94
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

The Clover plugin for JBuilder

4.7.2. Installing the JBuilder Plugin

To install the Clover JBuilder Plugin:

1. Locate your JBuilder installation directory. For the rest of this document, this directory
will be referred to as JBUILDER_HOME.

Clover 1.3.13 User Manual

Page 95
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

2. Download the Clover JBuilder zip file, and extract it into a temporary directory.
3. Copy the lib\clover-jbuilder.jar file into the JBUILDER_HOME/lib/ext directory.
4. The next time you start JBuilder, Clover will be available.

You will need a license to activate your plugin.

• Download your clover.license file from http://www.cenqua.com/licenses.jspa. Evaluation
licenses are available free of charge.

• Place the clover.license file next to the clover-jbuilder.jar file in the
JBUILDER_HOME/lib/ext directory.

4.7.3. Uninstalling the JBuilder Plugin

To uninstall the Clover JBuilder Plugin:

1. Shutdown any running instances of JBuilder.
2. Delete the clover-jbuilder.jar file from the JBUILDER_HOME/lib/ext directory.
3. Restart your JBuilder instance.

4.7.4. Quick Start Guide

This quick start guide will take you through the steps required to generate a clover coverage
report for your project.

1. Enable Clover, by selecting the 'Enable Clover' check box in the 'Project | Project
Properties | Clover' properties page.

2. Add the clover plugin jar to your project library path.
3. Turn on clover instrumentation by clicking the toolbar item
4. Rebuild your project using any of the build mechanisms provided by JBuilder.
5. View the project coverage data by clicking the toolbar item.
6. Run your application or test cases. This will generate your Coverage data.
7. Refresh/load your coverage data by clicking the to see which parts of your application

were covered.

4.7.5. Working with Clover

Your most frequent interaction with Clover will be via the Clover Toolbar (shown below).
All the functions available through the toolbar are also available in the 'Project' menu.

Clover 1.3.13 User Manual

Page 96
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

toolbar
The Clover toolbar contains the following functions:

• Build with Clover. Toggles the use of the Clover Compiler when JBuilder compiles the
current project.

• . Show Coverage. Toggles the display of coverage information in the Source editors.
• Refresh coverage button. Coverage data for the current project is reloaded from disk.
• Coverage summary bar. Displays the coverage level of the current project.
• Reset Coverage. Deletes the recorded coverage data for the current project.
• Delete Coverage. Deletes the recorded coverage data AND the coverage database for the

current project.

In addition, the 'Project' menu contains additional functions:

• Generate Report.... Launches the report generation wizard that will take you through the
steps required to generate a Pdf, Html or XML report.

• Filter Coverage.... Launches a dialog to set the context filter.

4.7.6. Viewing Coverage Results

Java Source Editor

The Clover JBuilder plugin allows you to view the clover coverage data directly within the
Java Source Editor (as seen below).

Clover 1.3.13 User Manual

Page 97
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Source coverage view
The coverage data is displayed in two ways:

• As a marker in the left hand gutter.
• As highlights within the Java Source Editor.

By default, coverage data is represented by three colours.

• Red indicates that the line of source is not fully covered.
• Green indicates that the line of source is fully covered.
• Yellow indicates that the coverage data being displayed is out of date. The source file has

changed since the coverage data was generated, and will need to be re-instrumented.

Project Coverage Tree

The Clover Plugin allows you to view a coverage tree (see below) for the current project.
This coverage tree is located in the Project Pane, on the left hand side of the IDE.

Clover 1.3.13 User Manual

Page 98
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Project view
Clover Coverage Database File Type support

Clover provides support for viewing arbitrary coverage databases. Just add a coverage
database file to your project and explore the coverage recordings. The default coverage
database file extension is db. This can be modified as necessary via 'Tools | Preferences' and
then 'Browser | File types' properties page.

Coverage database

Clover 1.3.13 User Manual

Page 99
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

4.7.7. Configuration Options

The Clover Plugin configuration options are available through the 'Project | Project
Properties' menu, or the project node (right click) context menu. Configuration is split into
Compilation configuration and View configuration.

Compilation Options

Compilation properties

Initstring

This section controls where the Clover coverage database will be stored. Select 'Automatic'

Clover 1.3.13 User Manual

Page 100
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

to have Clover manage this location for you (relative to your project directory). Select 'User
Specified' to nominate the path to the Clover coverage database. This is useful if you want to
use the plugin in conjunction with an Ant build that already sets the location of the Clover
coverage database.

Flush Policy

The Flush Policy controls how Clover writes coverage data to disk at runtime. "Directed" is
the default and means coverage data is written to disk when the JVM exists (or when your
test cases finish). "Interval" allows you to specify that coverage data should be written out at
regular intervals. "Threaded" will actively flush coverage data to disk at regular intervals.
See Flush Policies.

Filtering

If you do not want all of your source instrumented, then you can control which this using
these two Ant pattern sets. For example, you may prevent tests from being instrumented by
using an "Excludes" value of **/*Test.java as shown.

Compiler

This allows you to select the java compiler used by clover to compile your java source once
it has been instrumented.

Language Level

Allows you to specify which language features you would like Clover to support. If you use
asserts within your code, you would need to select '1.4' or higher, if you use enums, then you
need to select '1.5'.

View Options

Clover 1.3.13 User Manual

Page 101
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Viewer properties

Refresh Policy

The Refresh Policy controls how the Clover Plugin monitors the Coverage Database for new
data. "Manual" is the default and means that you have to click to refresh the coverage data.
"Automatic" means that the Clover Plugin will periodically check for new coverage data for
you.

Inline View

Allow you to customize where coverage data is displayed within the JBuilder IDE. Gutter
marks appear in the left hand gutter of the Java Source Editor. Inline highlights appear

Clover 1.3.13 User Manual

Page 102
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

directly over your source code. The Coverage Tree is located within the IDEs project view,
and provides a per file view of your project coverage.

Source Highlighting

Allows you to fine tune the colours used Clover in its coverage reporting. The 'xxx highlight
colour' is used for Source Highlights and the 'xxx stripe colour' is used for Gutter marks.

Span

Allows you to configure the span used by Clover. See Spans for more information.

Filter Options

Clover 1.3.13 User Manual

Page 103
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Filters properties

Block Filters

Allows you to specify contexts to ignore when viewing coverage information.

Regexp Filters

The regexp filters allow you to define custom contexts to ignore when viewing coverage
information.

Working with regexp filters.

• Use group of button on the right hand side to Create, Delete, Edit or Copy the selected
filter.

• All new and edited regexp filters will be shown in 'blue', indicating that they are currently
unavailable.

• To make a new/edited filter available, you need to delete the existing coverage database
using the Delete Coverage menu item and rebuild your project.

Note:
See Coverage Contexts for more information.

4.7.8. Example: Creating a regexp context filter

For the sake of this example, let us assume that we want to remove all private methods from
the coverage reports. How would we go about this?

• Open the configuration panel "Tools | Project Properties | Clover | Filters".
• Select Add to create a new Regexp Context Filter.
• Select Edit to open up the Regexp Edit dialog.
• Set the name to private.
• Since we are creating this filter to filter private 'methods', specify the Method type.
• We now need to define regular expression that will match all private method signatures.

That is, a regexp that will match any method with the private modifier. An example of
such a regexp is (.*)?private .*. Enter this regexp in the regexp field.

• You will notice that the name of this new filter appears in blue. Blue is used to indicate
that the filter is either new or recently edited and therefore 'unavailable'. To make this
new filter available, select Delete Coverage from the Clover menu and recompile your
project. Once active, you will notice the private filter appears in the Context Filter
Dialog. You will now be able to filter private methods out of your Clover coverage
calulations and reports.

Clover 1.3.13 User Manual

Page 104
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

4.7.9. FAQ

Q: Why does JBuilder prompt me to save a clover enabled project on exit when I have
not changed any settings?

A: During the project build process, clover needs to modify the projects sourcepath to allow
for various compiler optimizations. Although it only exist for the duration of the build, this
configuration change is what triggers the project to be considered 'dirty', and hence the save
upon exit dialog.

4.8. Clover JDeveloper 10g Plugin UserGuide

Plugin Version 1.0

System Requirements: Oracle JDeveloper 9.0.5.1

4.8.1. Overview

The Clover JDeveloper Plugin allows you to instrument your Java code and view your
coverage results easily from within the Oracle JDeveloper Java IDE.

Clover 1.3.13 User Manual

Page 105
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover JDeveloper plugin

4.8.2. Installing

Once you have downloaded the Clover JDeveloper Plugin package from
http://www.cenqua.com, you can install the plugin as follows:

1. shutdown any running instances of JDeveloper
2. remove any previous versions of the the clover plugin jar from

JDEVELOPER_HOME/jdev/lib/ext
3. copy CLOVER_HOME/lib/clover-jdeveloper.jar into the

JDEVELOPER_HOME/jdev/lib/ext directory, and restart JDeveloper.

You will need a license to activate your plugin.

• Download your clover.license file from http://www.cenqua.com/licenses.jspa. Evaluation
licenses are available free of charge.

• Place the clover.license file next to the clover-jdeveloper.jar file in the

Clover 1.3.13 User Manual

Page 106
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

JDEVELOPER_HOME/jdev/lib/ext directory.

If you are upgrading from a previous version of the Clover JDeveloper Plugin, you will also
need to do the following.

• Edit the JDEVELOPER_HOME/jdev/system.../ide.properties file,
removing all of the MainWindow.Toolbar.item property references to Clover.

4.8.3. Uninstalling

To uninstall the Clover JDeveloper Plugin:

1. shutdown any running instances of JDeveloper
2. delete the clover-jdeveloper.jar file from the JDEVELOPER_HOME/jdev/lib/ext

directory.
3. restart JDeveloper

4.8.4. Configuring your Project

Add clover jar to your project classpath.

• Open the project properties "Tools | Project Properties... " or by double clicking on the
project within the Navigator window.

• Go to "Profiles | Active Profile | Libraries". Create a new library and add the
JDEVELOPER_HOME/jdev/lib/ext/clover-jdeveloper.jar to the
libraries classpath. Add this library to your projects 'Selected Libraries'.

(The clover jar needs to be in the classpath because it is needed at runtime when you are
running your unit tests and at compile time when you are compiling instrumented source
files.)

4.8.5. Getting Started

This getting started guide will take you through the steps required to generate Clover
coverage for your project.

1. Ensure that you have configured your project to use Clover.
2. Enable Clover, by selecting the 'Enable Clover' check box in the "Tools | Project

Properties... | Clover" interface.
3. Turn on clover instrumentation by selecting the toolbar item
4. Rebuild your project using any of the build mechanisms provided by JDeveloper.
5. Run your project by running the unit tests or some other means.
6. Refresh the latest coverage data by clicking the toolbar item.
7. View the project coverage data by selecting the toolbar item.

4.8.6. Viewing Coverage Results

Clover 1.3.13 User Manual

Page 107
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Code Coverage information will be available for viewing within JDeveloper after you have
built and run your application. The display of coverage information within the IDE can be
controlled via the toggle button in the IDE toolbar, or the "Show Coverage" menu item in the
"Clover" menu.

Within the Application Navigator, you will see coverage percentages displayed next to
projects, packages and source files that have been clovered. The coverage displayed at each
level of the Navigator is the sum of coverage of the packages or source files below it. That is,
the coverage of a package is the sum of the coverage for the files contained within the
package and all sub-packages.

Application Navigator coverage overlay
Within the Structure window, you can view a summary of the coverage details for the
currently 'active node'. This summary information includes the coverage of methods,
conditional and statements, as well as the number of lines of code, files, classes and packages
associated with this summary.

Clover 1.3.13 User Manual

Page 108
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Structure window coverage summary panel
In addition, the plugin can annotate the Java code with the coverage information. Green
indicates that the line of source has been 'covered', red indicates it has not been 'covered', and
yellow indicates that the coverage information is out of date. The tooltips indicate exactly
how many times a line has been executed, or an expression has evaluated to true etc.

Clover 1.3.13 User Manual

Page 109
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

editor pane with overlaid coverage information

4.8.7. Working with Clover

There are a number of menu items and toolbar actions that allow you to interact with Clover.
They are as follows:

• Show Coverage When selected, coverage information will be displayed within the IDE,
as decided in the previous section.

• Build with Clover. When selected, Clover will instrument your source files during the
JDeveloper build cycle.

• Refresh Coverage Will force the plugin to load the latest coverage information. You will
need to refresh after building or running your application.

• Delete Coverage Delete the current coverage database.
• Generate Report... Launches the report generation wizard that will take you through the

steps required to generate a Pdf, Html or XML report.
• Filter Coverage... Launches a dialog to set the context filter.

4.8.8. Compilation Options

Configuration options for Clover are accessible on the Clover panel of the Project Properties
dialog. The first Tab on this panel provides compilation options:

Clover 1.3.13 User Manual

Page 110
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Compiler configuration screen
Initstring

This section controls where the Clover coverage database will be stored. Select 'Automatic'
to have Clover manage this location for you (relative to your project directory). Select 'User
Specified' to nominate the path to the Clover coverage database. This is useful if you want to
use the plugin in conjunction with an Ant build that already defines the location of the Clover
coverage database.

Flush Policy

The Flush Policy controls how Clover writes coverage data to disk at runtime. See Flush
Policies.

Filtering

Allows you to specify a comma separated list of set of Ant Patternsets that describe which
files to include and exclude in instrumentation. These options are the same as those described
in the <clover-setup> task.

Clover 1.3.13 User Manual

Page 111
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Language Level

Allows you to specify which language features you would like Clover to support. If you use
asserts within your code, you would need to select '1.4' or higher, if you use enums, then you
need to select '1.5'.

4.8.9. Viewing options

The second Tab on the configuration panel provides viewing options;

Viewer configuration screen
Refresh Policy

The Refresh Policy controls how the Clover Plugin monitors the Coverage Database for new
data. "Manual" is the default and means that you have to click button to refresh the coverage
data. "Automatic" means that the Clover Plugin will periodically check for new coverage
data for you.

Inline View

Clover 1.3.13 User Manual

Page 112
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Allows you to customize where coverage data is displayed within the JDeveloper IDE. Gutter
marks appear in the left hand gutter of the Java Source Editor. Inline refers to the annotations
that appear directly over your source code. Overlay refers to the coverage information
displayed within the Application Navigator window, and Summary refers to the coverage
summary panel available within the Structure Window.

Span

Allows you to configure the span used by Clover. See Spans for more information.

4.8.10. Filter Options

The third Tab on the configuration panel provides viewing options;

Filter configuration screen
Regexp Filters

Clover 1.3.13 User Manual

Page 113
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

The regexp filters allow you to define custom contexts to ignore when viewing coverage
information.

Working with regexp filters.

• Use group of button on the right hand side to Create, Delete, Edit or Copy the selected
filter.

• All new and edited regexp filters will be shown in 'blue', indicating that they are currently
unavailable.

• To make a new/edited filter available, you need to delete the existing coverage database
using the menu item and rebuild your project.

Note:
See Coverage Contexts for more information.

Block Filters

Allows you to specify contexts to ignore when viewing coverage information. For example,
selecting the if context will remove if body (not the conditional) from the coverage reports.

4.8.11. Example: Creating a regexp context filter

For the sake of this example, let us assume that we want to remove all private methods from
the coverage reports. How would we go about this?

• Open the configuration panel "Tools | Project Properties | Clover | Filters".
• Select Add to create a new Regexp Context Filter.
• Select Edit to open up the Regexp Edit dialog.
• Set the name to private.
• Since we are creating this filter to filter private 'methods', specify the Method type.
• We now need to define regular expression that will match all private method signatures.

That is, a regexp that will match any method with the private modifier. An example of
such a regexp is (.*)?private .*. Enter this regexp in the regexp field.

• You will notice that the name of this new filter appears in blue. Blue is used to indicate
that the filter is either new or recently edited and therefore 'unavailable'. To make this
new filter available, select from the Clover menu and recompile your project. Once
active, you will notice the private filter appears in the Context Filter Dialog. You will
now be able to filter private methods out of your Clover coverage calulations and reports.

4.8.12. Source Highlight Options

The configuration panel for the source highlighting options is available in the JDeveloper
preferences located at "Tools | Preferences | Clover".

Clover 1.3.13 User Manual

Page 114
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Compiler configuration screen
Source Highlighting

The source highlighting configuration panel allows you to specify the colours used by clover
when it renders coverage information in the JDeveloper editor panel. The Background colour
represents the colour used to highlight each line of source code, the Gutter colour is the
colour of the mark located in the editors left side gutter.

4.8.13. FAQ

Q: Clover has caused blank actions to appear in my Main Toolbar.

A: This happens when you are upgrading to version 1.0RC1 of the plugin. To fix this, you
will need to edit the JDEVELOPER_HOME/jdev/system.../ide.properties file,
removing all of the MainWindow.Toolbar.item property references to Clover.

Clover 1.3.13 User Manual

Page 115
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

5. Command Line Tools

5.1. Clover Command Line Tools

Clover provides a set of Command line tools for integration with legacy build systems such
as Make, or custom build scripts. If you use Jakarta Ant to build your project, a set of
Clover Ant Tasks provide easier Ant integration.

To use the tools in your build system, the synopsis is:

1. Copy and instrument your source files using CloverInstr.
2. Compile the instrumented source files using a standard java compiler.
3. Execute your tests using whatever framework.
4. (Optional) If you have multiple separate coverage databases, merge them using

CloverMerge
5. Use either the XmlReporter, HtmlReporter, ConsoleReporter or SwingViewer to view the

measured coverage results.

5.1.1. Command line tools:

CloverInstr Copies and instruments individual java source
files, or a directory of source files.

CloverMerge Merges existing Clover databases to allow for
combined reports to be generated.

XmlReporter Produces coverage reports in XML

HtmlReporter Produces coverage reports in HTML

PDFReporter Produces coverage reports in PDF format

ConsoleReporter Reports coverage results to the console

SwingViewer Launches the Swing coverage viewer

5.2. CloverInstr

This tool copies and instruments a set of Java source files specified on the command line.
The output of the instrumentation process is instrumented java source; you will then need
to compile the instrumented source using a standard Java compiler.

5.2.1. Usage

Clover 1.3.13 User Manual

Page 116
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

java com.cenqua.clover.CloverInstr [OPTIONS] PARAMS [FILES...]

5.2.2. Params

-i, --initstring <file> Clover initstring. This is the full path to the dbfile
that will be used to construct/update to store
coverage data.

-s, --srcdir <dir> Directory containing source files to be
instrumented. If omitted individual source files
should be specified on the command line.

-d, --destdir <dir> Directory where Clover should place the
instrumented sources. Note that files will be
overwritten in the desination directory.

5.2.3. Options

-p, --flushpolicy <policy> Tell Clover which flushpolicy to use when
flushing coverage data to disk. Valid values are
"directed", "interval" and "threaded". With
"interval" or "threaded", you must also specify a
flushinterval using -f. The default value is
"directed".

-f, --flushinterval <int> Tell Clover how often to flush coverage data
when using either "interval" or "threaded"
flushpolicy. Value in milliseconds.

--instrumentation <policy> Set the instrumentation strategy. Valid values
are "field" and "class". Default is "class".

-e, --encoding <encoding> Specify the file encoding for source files. If not
specified, the platform default encoding is used.

-jdk14 Direct Clover to parse sources using the JDK1.4
grammar.

-jdk15 Direct Clover to parse sources using the JDK1.5
grammar.

-v, --verbose Enable verbose logging.

5.2.4. API Usage

CloverInstr provides a simple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

Clover 1.3.13 User Manual

Page 117
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

import com.cenqua.clover.CloverInstr;

...

String [] cliArgs = { "-jdk14", "-i", "clover.db", "-d", "build/instr", "Money.java" };
int result = CloverInstr.mainImpl(cliArgs);
if (result != 0) {

// problem during instrumentation
}

5.2.5. Examples

java com.cenqua.clover.CloverInstr -i clover.db -s src -d build/instr

Find all java source files in the directory "src", copy and instrument them into the directory
"build/instr", which will be constructed if it does not exist. Coverage database "clover.db" is
initialised.

java com.cenqua.clover.CloverInstr -jdk14 -i clover.db -d ../../build/instr \
Money.java IMoney.java

Copy and instrument the source files "Money.java" and "IMoney.java" into the directory
"../../build/instr". Use the JDK1.4 grammar (ie. support the 'assert' keyword).

5.3. CloverMerge

This tool merges existing Clover databases to allow for combined reports to be generated.

5.3.1. Usage

java com.cenqua.clover.CloverMerge [OPTIONS] PARAMS [DBFILES...]

5.3.2. Params

-i, --initstring <file> Clover initstring. Clover initstring. This is the
path where the new merged database will be
written.

5.3.3. Options

-s, --span <interval> Specifies the span to use when reading
subsequent databases to be merged. This
option can be specified more than once and
applies to all databases specified after the
option, or until another span in specified

-v, --verbose Enable verbose logging.

Clover 1.3.13 User Manual

Page 118
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

-d, --debug Enable debug logging.

5.3.4. API Usage

CloverMerge provides a simple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

import com.cenqua.clover.CloverMerge;

...

String [] cliArgs = { "-i", "new.db", "proj1.db", "proj2.db", "-s", "10s", "proj3.db" };
int result = CloverMerge.mainImpl(cliArgs);
if (result != 0) {

// problem during instrumentation
}

5.3.5. Examples

java com.cenqua.clover.CloverMerge -i new.db proj1.db proj2.db

Merges proj1.db and proj2.db into the new database new.db. A span of zero seconds is used.

java com.cenqua.clover.CloverMerge -i new.db proj1.db -s 30s proj2.db \
proj3.db

Merges proj1.db, proj2.db and proj3.db into the new database new.db. A span of zero
seconds is used for proj1.db, and a span of 30 seconds is used for proj2.db and proj3.db.

5.4. XmlReporter

Produces an XML report of Code Coverage for the given coverage database.

5.4.1. Usage

java com.cenqua.clover.reporters.xml.XMLReporter [OPTIONS] PARAMS

5.4.2. Params

-i, --initstring <file> The initstring of the coverage database.

-o, --outfile <file> The file to write XML output to.

5.4.3. Options

Clover 1.3.13 User Manual

Page 119
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

-t, --title <string> Report title

-l, --lineinfo Include source-level coverage info

-s, --span <interval> Specifies how far back in time to include
coverage recordings from since the last Clover
build. See Using Spans. Defaults to 0 seconds.

-d, --debug Switch logging level to debug

-v, --verbose Switch logging level to verbose

5.4.4. API Usage

XMLReporter provides a simple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

import com.cenqua.clover.reporters.xml.XMLReporter;

...

String [] cliArgs = { "-i", "clover.db", "-o", "coverage.xml" };
int result = XMLReporter.mainImpl(cliArgs);
if (result != 0) {

// problem during report generation
}

5.4.5. Examples

java com.cenqua.clover.reporters.xml.XMLReporter -i clover.db -o coverage.xml

Read coverage for the Clover database "clover.db", and produce a report in the file
"coverage.xml"

java com.cenqua.clover.reporters.xml.XMLReporter -l -t "My Coverage" -i clover.db -o coverage.xml

Produce the same report as above, but include source-level coverage information, and a
report title.

5.5. HtmlReporter

Produces an HTML report of Code Coverage for the given coverage database.

5.5.1. Usage

java com.cenqua.clover.reporters.html.HtmlReporter [OPTIONS] PARAMS

Clover 1.3.13 User Manual

Page 120
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

5.5.2. Params

-i, --initstring <file> The initstring of the coverage database.

-o, --outputdir <dir> The directory to write the report to. Will be
created if it doesn't exist.

5.5.3. Options

-t, --title <string> Report title

-bw Don't colour syntax-hilight source - smaller html
output.

-h, --hidesrc Don't render source level coverage.

-p, --sourcepath <path> The source path to search when looking for
source files.

-b, --hidebars Don't render coverage bars.

-tw, --tabwidth <int> The number of spaces to subsitute TAB
characters with. Defaults to 4.

-c, --orderby <compname> comparator to use when listing packages and
classes. Default is PcCoveredAsc. valid values
are

Alpha
Alpabetical.
PcCoveredAsc
Percent total coverage, ascending.
PcCoveredDesc
Percent total coverage, descending.
ElementsCoveredAsc
Total elements covered, ascending
ElementsCoveredDesc
Total elements covered, descending
ElementsUncoveredAsc
Total elements uncovered, ascending
ElementsUncoveredDesc
Total elements uncovered, descending

-l, --ignore <string> Comma or space separated list of contexts to
ignore when generating coverage reports. Most
useful one is "catch". valid values are "assert",
"static", "instance", "constructor", "method",
"switch", "while", "do", "for", "if", "else", "try",
"catch", "finally", "sync", or the name of a

Clover 1.3.13 User Manual

Page 121
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

user-defined Context. See Using Contexts

-s, --span <interval> Specifies how far back in time to include
coverage recordings from since the last Clover
build. See Using Spans. Defaults to 0 seconds.

-d, --debug Switch logging level to debug

-v, --verbose Switch logging level to verbose

5.5.4. API Usage

HtmlReporter provides a simple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

import com.cenqua.clover.reporters.html.HtmlReporter;

...

String [] cliArgs = { "-i", "clover.db", "-o", "clover_html" };
int result = HtmlReporter.mainImpl(cliArgs);
if (result != 0) {

// problem during report generation
}

5.5.5. Examples

java com.cenqua.clover.reporters.html.HtmlReporter -i clover.db -o clover_html

Read coverage for the Clover database "clover.db", and produce a report in the directory
"clover_html"

java com.cenqua.clover.reporters.html.HtmlReporter -c ElementsCoveredAsc
-t "My Coverage" -i clover.db -o clover_html

Produce the same report as above, but include a report title, and order lists by total elements
covered rather than percentage covered.

5.6. PDFReporter

Produces a PDF summary report of Code Coverage for the given coverage database.

5.6.1. Usage

java com.cenqua.clover.reporters.pdf.PDFReporter [OPTIONS] PARAMS

Clover 1.3.13 User Manual

Page 122
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

5.6.2. Params

-i, --initstring <file> The initstring of the coverage database.

-o, --outputfile <file> The file to write the report to.

5.6.3. Options

-t, --title <string> Report title

-b, --hidebars Don't render coverage bars.

-p, --pagesize <size> Specify the page size to render. Valid values are
"Letter" and "A4". Default is "A4".

-c, --orderby <compname> comparator to use when listing packages and
classes. Default is PcCoveredAsc. valid values
are

Alpha
Alpabetical.
PcCoveredAsc
Percent total coverage, ascending.
PcCoveredDesc
Percent total coverage, descending.
ElementsCoveredAsc
Total elements covered, ascending
ElementsCoveredDesc
Total elements covered, descending
ElementsUncoveredAsc
Total elements uncovered, ascending
ElementsUncoveredDesc
Total elements uncovered, descending

-l, --ignore <string> Comma or space separated list of contexts to
ignore when generating coverage reports. Most
useful one is "catch". valid values are "assert",
"static", "instance", "constructor", "method",
"switch", "while", "do", "for", "if", "else", "try",
"catch", "finally", "sync", or the name of a
user-defined Context. See Using Contexts

-s, --span <interval> Specifies how far back in time to include
coverage recordings from since the last Clover
build. See Using Spans. Defaults to 0 seconds.

-d, --debug Switch logging level to debug

-v, --verbose Switch logging level to verbose

Clover 1.3.13 User Manual

Page 123
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

5.6.4. API Usage

PDFReporter provides a simple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

import com.cenqua.clover.reporters.pdf.PDFReporter;

...

String [] cliArgs = { "-i", "clover.db", "-o", "coverage.pdf" };
int result = PDFReporter.mainImpl(cliArgs);
if (result != 0) {

// problem during report generation
}

5.6.5. Examples

java com.cenqua.clover.reporters.pdf.PDFReporter -i clover.db -o coverage.pdf

Read coverage for the Clover database "clover.db", and produce a pdf report in the file
"coverage.pdf"

java com.cenqua.clover.reporters.pdf.PDFReporter -c ElementsCoveredAsc
-t "My Coverage" -i clover.db -o coverage.pdf

Produce the same report as above, but include a report title, and order lists by total elements
covered rather than percentage covered.

5.7. ConsoleReporter

Reports Code Coverage for the given coverage database to the console.

5.7.1. Usage

java com.cenqua.clover.reporters.console.ConsoleReporter [OPTIONS] PARAMS

5.7.2. Params

-i, --initstring <file> The initstring of the coverage database.

5.7.3. Options

-t, --title <string> Report title

-l, --level <string> The level of detail to report. Valid values are

Clover 1.3.13 User Manual

Page 124
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

"summary", "class", "method", "statement".
Default value is "summary".

-p, --sourcepath <path> The source path to search when looking for
source files.

-s, --span <interval> Specifies how far back in time to include
coverage recordings from since the last Clover
build. See Using Spans. Defaults to 0 seconds.

-d, --debug Switch logging level to debug

-v, --verbose Switch logging level to verbose

5.7.4. API Usage

ConsoleReporter provides a simple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

import com.cenqua.clover.reporters.console.ConsoleReporter;

...

String [] cliArgs = { "-l", "method", "-t", "Method Coverage", "-i", "clover.db" };
int result = ConsoleReporter.mainImpl(cliArgs);
if (result != 0) {

// problem during report generation
}

5.7.5. Examples

java com.cenqua.clover.reporters.console.ConsoleReporter -i clover.db

Read coverage for the Clover database "clover.db", and produce a summary report to the
console.

java com.cenqua.clover.reporters.xml.XMLReporter -l "method" -t "Method Coverage" -i clover.db

Produce the same report as above, but include method-level coverage information, and a
report title.

5.8. SwingViewer

Launches the Swing Viewer to allow interactive browsing of Code Coverage.

5.8.1. Usage

Clover 1.3.13 User Manual

Page 125
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

java com.cenqua.clover.reporters.jfc.Viewer [OPTIONS] PARAMS

5.8.2. Params

-i, --initstring <file> The initstring of the coverage database.

5.8.3. Options

-p, --sourcepath <path> The source path to search when looking for
source files.

-s, --span <interval> Specifies how far back in time to include
coverage recordings from since the last Clover
build. See Using Spans. Defaults to 0 seconds.

-tw, --tabwidth <number> Width to use when rendering tabs in source
code.

5.8.4. API Usage

SwingViewer provides a simple API that accepts an array of strings representing the
command line arguments and returns an integer result code. The following fragment
illustrates use of the API:

import com.cenqua.clover.reporters.jfc.Viewer;

...

String [] viewerArgs = { "-i", "clover.db" };
int result = Viewer.mainImpl(viewerArgs);
if (result != 0) {

// problem
}

5.8.5. Examples

java com.cenqua.clover.reporters.jfc.Viewer -i clover.db

Launch the Swing Viewer reading the Clover database "clover.db".

For more information about using the Swing Viewer, see the Using The Swing Viewer.

Clover 1.3.13 User Manual

Page 126
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

6. Advanced Usage

6.1. Background: The Clover Coverage Database

This section provides background information on the structure, lifecycle and management of
the Clover database.

6.1.1. Database structure and lifecycle

The Clover database consists of several files that are constructed at various stages of the
instrumentation and coverage recording process. The following table shows the various files
created if Clover is initialised with an initstring of "clover.db"

Registry file

Filename: clover.db

Description: The Registry file contains information about all of the classes that have been
instrumented by Clover. This file does not contain any actual coverage recording data.

Lifecycle: The Registry file is written during the instrumentation process. If an existing
Registry file is found, the existing file is updated. If no Registry file is found, a new Registry
file is created. The Registry file is read by Clover-instrumented code when it is executed,
and also during report generation or coverage browsing (such as via an IDE plugin or the
Swing Viewer).

ContextDef file

Filename: clover.db.ctx

Desription: The ContextDef file contains user-defined context definitions. Note that while
this file is in plain text, it is managed by Clover and should not be edited directly by the user.

Lifecycle: The ContextDef file is written prior to Clover instrumentation. The ContextDef
file is read during instrumentation, report generation and coverage browsing.

CoverageRecording Files

Filename: clover.dbHHHHHHH_TTTTTTTTTT or
clover.dbHHHHHHH_TTTTTTTTTT.1 (where HHHHHHH and TTTTTTTTTT are both
hex strings)

Clover 1.3.13 User Manual

Page 127
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Description: CoverageRecording files contain actual coverage data. When running
instrumented code, Clover creates one or more Coverage Recorders. Each Coverage
Recorder will write one CoverageRecording file. The number of Coverage Recorders created
at runtime depends the nature of the application you are Clovering. In general a new
Coverage Recorder will be created for each new ClassLoader instance that loads a Clovered
class file. The first hex number in the filename (HHHHHHH) is a unique number based on
the recording context. The second hex number (TTTTTTTTTT) is the timestamp (ms since
epoch) of the creation of the Clover Recorder. CoverageRecording files are named this way
to try to minimise the chance of a name clash. While it is theoretically possible that a name
clash could occur, in practice the chances are very small.

Lifecycle: CoverageRecording files are written during the execution of Clover-instrumented
code. CoverageRecording files are read during report generation or coverage browsing.

Note:
Clover 1.3.7 introduced a new failsafe mechanism for writing recording files to disk when using interval-based flush policies.
The mechanism alternates between writing to a primary recording file and a secondary recording file. This prevents data loss in
the event of abnormal JVM termination. The secondary recording file has the same name as a normal recording file but with
.1 appended to its name.

6.1.2. Managing the Clover database

Because the Clover database can consist of many recording files, you might find it easier to
create the database in its own directory. This directory can be created at the start of a Clover
build, and deleted once coverage reports have been generated from the database.

Although Clover will update an existing database over successive builds, it is in general
recommended that the database be deleted after it is used to generate reports, so that a fresh
database is created on the next build. Doing this improves the runtime performance of
Clover. The <clover-clean> Ant task is provided to allow easy deletion of a Clover database.
Note that the IDE Plugins all have a feature to automatically manage the Clover database for
you.

6.2. Using Clover with Distributed Applications

In some cases the application you wish to test has many components running on separate
nodes in a network, or even on disconnected machines. You can use Clover to test such
applications, although some additional setup is required.

When deploying you application in container environments, you should also check to ensure
that Clover has sufficient permissions to function.

Clover 1.3.13 User Manual

Page 128
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

6.2.1. Background: the Clover initstring

At build time, Clover constructs a registry of your source code, and writes it to a file at the
location specified in the Clover initstring. When Clover-instrumented code is executed (e.g.
by running a suite of unit tests), Clover looks in the same location for this registry file to
initialise itself. Clover then records coverage data and writes coverage recording files next to
the registry file during execution. See Clover Database Structure for more information.

6.2.2. Telling Clover how to find it's registry

If you are deploying and running your Clover-instrumented code on different machines, you
must provide a way for Clover to find the registry file, and provide a place for Clover to
write coverage recording files, otherwise no coverage will be recorded. Clover provides three
ways to achieve this:

1. Specify an Initstring that is a globally accessible file path
The compile-time initstring should be an absolute path to the same filesystem location
and be accessible and writable from the build machine and all execution machines. This
could be a path on shared drive or filesystem.

2. Specify an Initstring that is a relative path, resolved at runtime
The compile-time initstring represents a relative path (relative to the CWD of each
execution context). To do this you need to specify relative="yes" on the
<clover-setup> task.

3. Specify an Initstring at runtime via System properties
You can override the Clover initstring at runtime via System Properties. Two System
properties are supported
clover.initstring If not null, the value of this property is

treated as an absolute file path to the Clover
registry file

clover.initstring.basedir If not null (and the clover.initstring
System property is not set), the value of this
property is used as the base directory for the
file specified at compile-time in the initstring
to resolve the full path to the Clover registry.

clover.initstring.prefix If not null (and the clover.initstring or
clover.initstring.basedirSystem
properties are not set), the value of this
property is prepended to the string value of
compile-time specified initstring to resolve
the full path to the Clover registry.

To set one of these properties, you need to pass it on the command line when java is

Clover 1.3.13 User Manual

Page 129
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

launched, using the -D parameter:

java -Dclover.initstring=... myapplication.Server
For application servers, this may involve adding the property to a startup script or batch
file.

Note:
For methods 2 and 3 above, as part of the test deployment process, you will need to copy the Clover registry file from the
location on the build machine to the approriate directory on each of the execution machines. This needs to occur after the
Clover build is complete, and before you run your tests. Once test execution is complete, you'll need to copy the coverage
recording files from each remote machine to the initstring path on build machine to generate coverage reports.

6.2.3. Classpath Issues

You must put clover.jar (or the appropriate Clover plugin jar) in the classpath for any
JVM that will load classes that have been instrumented by Clover. How you go about this
depends on the nature of the application you are testing and the particular environment being
deployed to.

6.2.4. Restricted Security Environments

In some java environments, such as J2EE containers, applet environments, or applications
deployed via Java Webstart, security restrictions are applied to hosted java code that restrict
access to various system resources.

To use Clover in these environments, Clover needs to be granted various security
permissions for it to function. This requires the addition of a Grant Entry to the security
policy file for the Clover jar. For background on the syntax of the policy file, see Default
Policy Implementation and Policy File Syntax. For background on setting Java security
policies in general, see Permissions in the Java 2 SDK.

Recommended Permissions

Clover requires access to the java system properties for runtime configurations, as well as
read write access to areas of the file system to read the clover coverage database and to write
coverage information. Clover also uses a shutdown hook to ensure that it flushes any as yet
unflushed coverage information to disk when java exits. To support these requirements, the
following security permissions are recommended:

grant codeBase "file:/path/to/clover.jar" {
permission java.util.PropertyPermission "*", "read";
permission java.io.FilePermission "<<ALL FILES>>", "read, write";
permission java.lang.RuntimePermission "shutdownHooks";

}

Clover 1.3.13 User Manual

Page 130
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://java.sun.com/products/javawebstart/

6.3. Flush Policies

How Clover writes coverage data to disk at runtime can be configured by changing Clover's
flush policy. Clover provides three policies: directed, interval and threaded. The
default mode is directed. The flush policy is set at instrumentation time, either via the
<clover-setup> Ant Task, or via the IDE plugin configuration screen.

Which flush policy you choose depends on the runtime environment that instrumented code
is executing in. In the most common unit testing scenarios the default flushpolicy will
suffice. In situations where instrumented code is executing in a hosted environment (like a
J2EE container) and shutting down the JVM at the end of testing is not desirable, you will
want to use one of the interval-based flush policies.

Policy Description

directed default. Coverage recordings are flushed only
when the hosting JVM is shut down, or where
the user has directed a flush using the
///CLOVER:FLUSH inline directive. Directed
flushing has the lowest runtime performance
overhead of all flush policies (depending on the
use of the flush inline directive). Note that no
coverage recordings will be written if the
hosting JVM is not shut down, or if the
hosting JVM terminates abnormally.

interval The interval policy flushes as per the
directed policy, and also at a maximum rate
determined by the interval set at instrumentation
time (see the flushinterval attribute on
<clover-setup>, or IDE plugin guides). The
interval mode is a "passive" mode in that
flushing potentially occurs only while
instrumented code is still being executed. There
exists the possibility that coverage data
recorded just prior to the end of execution of
instrumented code may not be flushed,
because the flush interval has not elapsed
between the last flush and the end of
execution of instrumented code. Any
coverage not flushed in this manner will be
flushed if/when the hosting JVM shuts down.
The interval policy should be used in
environments where shutdown of the hosting
JVM is not practical and thread creation by
Clover is not desired. If you don't mind Clover

Clover 1.3.13 User Manual

Page 131
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

creating a thread, use the threaded policy.
Runtime performance overhead is determined
by the flush interval.

threaded The threaded policy flushes as per the
directed policy, and also at a rate determined
by the interval set at instrumentation time (see
the flushinterval attribute on
<clover-setup>, or IDE plugin guides). The
threaded mode starts a separate thread to
perform flushes. The threaded policy should
be used in environments where shutdown of the
hosting JVM is not practical. Runtime
performance overhead is determined by the
flush interval.

6.4. Source Directives

Clover supports a number of directives that you can use in your source to control
instrumentation. Directives can be on a line by themselves or part of any valid single or
multi-line java comment.

6.4.1. Switching Clover on and off

///CLOVER:ON
///CLOVER:OFF

Switch Clover instrumentation on/off. This might be useful if you don't want Clover to
instrument a section of code for whatever reason. Note that the scope of this directive is the
current file only.

6.4.2. Force Clover to flush

///CLOVER:FLUSH

Clover will insert code to flush coverage data to disk. The flush code will be inserted as soon
as possible after the directive. See Flush Policies.

6.4.3. Change instrumentation strategy

Note:
This source directive has been deprecated and has no effect in Clover 1.3 and above.

Clover 1.3.13 User Manual

Page 132
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

///CLOVER:USECLASS

Clover will use a static holder class rather than a static member variable to support
instrumentation for the current file. The directive must occur before the first top level class
declaration in the file. This directive is useful when you don't want Clover to change the
public interface of your class (in EJB compilation for example).

6.5. Contexts

Clover defines a Context as a part of source code that matches a specified structure or
pattern. Contexts are either pre-defined or user-defined at instrumentation time. Each context
must have a unique name. At report time, you can specify which contexts you would like to
exclude in the coverage report.

Note:
Contexts are matched against your source at instrumentation-time. This means you need to re-instrument your code after
defining a new context.

6.5.1. Block Contexts

Block Contexts are pre-defined by Clover. They represent 'block' syntatic constructs in the
Java language. A full list of supported Block Contexts are shown below.

name description

static Static initializer block

instance Instance initializer block

constructor Constructor body

method Method body

switch Switch statement body

while While loop body

do do-while loop body

for For loop body

if if body

else else body

try try body

catch catch body

Clover 1.3.13 User Manual

Page 133
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

finally finally body

sync synchronized block

assert assert statement

@deprecated a deprecated block

6.5.2. Method Contexts

A Method Context represents the set of methods whose signature matches a given pattern.
Clover provides several pre-defined method contexts:

name regexp description

private (.*)?private .* matches all private methods

property (.*)?public
.*(get|set|is)[A-Z0-9].*

matches all property
getters/setters

You can define your own method contexts via the <methodContext> subelement of
<clover-setup>, or via the configuration panel of your Clover IDE Plugin.

Note:
When matching method signatures against context regexps, whitespace is normalised and comments are ignored.

6.5.3. Statement Contexts

A Statement Context represents the set of statements that match a given pattern. For example,
you might want to set up a statement context to allow you to filter out 'noisy' statements such
as logging calls by defining a statement context regexp .*LOG\.debug.*.

6.5.4. Using Context Filters

Note:
This section describes using context filters with Ant. For details of using filters with the IDE plugins, see the individual
documentation for the plugin.

Filtering catch blocks

In some cases you may not be interested in the coverage of statements inside catch blocks.
To filter them, you can use Clover's predefined catch context to exclude statements inside
catch blocks from a coverage report:

Clover 1.3.13 User Manual

Page 134
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

<clover-report>
<current outfile="clover_html">

<format type="html" filter="catch"/>
</current>
</clover-report>

This generates a source-level HTML report that excludes coverage from statements inside
catch blocks.

Filtering logging statements

To remove logging statements for coverage reports, you'll need to define one or more
statement contexts that match logging statements in your source:

<clover-setup ...>
<statementContext name="log" regexp="^LOG\..*">
<statementContext name="iflog" regexp="^if \(LOG\.is.*">

...
</clover-setup>

This defines two statement contexts. The first matches statements that start with LOG. while
the second matches statements that start with if (LOG. which is designed to match
conditional logging statements such as

if (LOG.isDebugEnabled()) {
// do some expensive debug logging

}

Once defining these contexts you now need to re-compile with Clover and then re-run your
tests. You can you then generate a report that excludes logging statements:

<clover-report>
<current outfile="clover_html" title="My Coverage">

<format type="html" filter="log,iflog"/>
</current>
</clover-report>

This generates a source-level HTML report that excludes coverage from logging statements.

6.6. Using Spans

The span attribute allows you to control which coverage recordings are merged to form a
current coverage report. By default, Clover only considers coverage recording files that were
written after the last Clover compilation. In some situations you may want to include earlier
coverage recordings. The span attribute lets you do this.

The span attribute takes an Interval which tells Clover how far back in time since the last

Clover 1.3.13 User Manual

Page 135
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover compilation that coverage recordings should be merged to build the report.

6.7. Extracting coverage data programmatically

6.7.1. Using XPath with Clover's XML reports

Clover's XML reports provide detailed coverage data in a format that is easy to access
programmatically using XPath. XML coverage reports can be generated by the
<clover-report> or <clover-historypoint> Ant tasks, via the Swing Viewer, or using one of
the Clover IDE plugins. The following example XPath expressions show how to extract data
from a Clover XML coverage report:
/coverage/project/metrics[@statements]

Extracts the total number of statements in the project.
/coverage/project/metrics[@coveredstatements]

Extracts the total number of uncovered statements in the project.
/coverage/project/package[name='com.foo.bar']/metrics[@statements]

Extracts the total number of statements in the package com.foo.bar
/coverage/project/package[name='com.foo.bar']/metrics[@coveredstatements]

Extracts the total number of covered statements in the package com.foo.bar

An XPath implementation is shipped with the JDK1.5 distribution. Third party
implementations that work with JDK1.4 and below include Jaxen, Dom4j, and JXP

The following code example (using the JDK1.5 implementation of XPath) demonstrates
simple extraction of coverage data from a Clover XML report:

import javax.xml.xpath.*;

...

XPath xpath = XPathFactory.newInstance().newXPath();
String stmtExpr = "/coverage/project/metrics[@statements]";
String coveredStmtExpr = "/coverage/project/metrics[@coveredstatements]";
InputSource inputSource = new InputSource("coverage.xml");
Double projectStatements = (Double) xpath.evaluate(expression, inputSource,

XPathConstants.NUMBER);
Double projectCoveredStatements = (Double) xpath.evaluate(expression, inputSource,

XPathConstants.NUMBER);

...

Clover 1.3.13 User Manual

Page 136
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://jaxen.org/
http://dom4j.org/
http://www.japisoft.com/jxpath/

7. Tutorials

7.1. Using Clover with Ant and JUnit

7.1.1. Using Clover with Ant and JUnit

This tutorial demonstrates how you can use Clover with JUnit to measure the code coverage
of a project. It takes you through the process of compiling a sample project and running the
unit tests from Ant, then modifying the build file to add Clover targets and properties. It is
split into three parts covering Current Reports, Historical Reports and Advanced Features.

The Clover Tutorial describes different features of Clover in a step-by-step approach. Once
you've completed the Tutorial, have a look at Using Clover Interactively and Using Clover in
Automated builds for examples of how to pull the different aspects of Clover together for
your project.

Before you start

You will need Clover, Ant and JUnit installed on your system, preferably the latest versions.

Instructions for installing Ant can be found in the Apache Ant User Manual.

Instructions for installing Clover can be found in the Installation Options section.

For instructions on installing JUnit consult the JUnit website. To allow JUnit to work with
Ant, you must also copy <JUNIT_HOME>/junit.jar into <ANT_HOME>/lib.

The Clover tutorial assumes that you have basic knowledge of creating and modifying Ant
build files. The Apache Ant User Manual provides any additional support you may require in
this area. It is also assumed that you have a basic understanding of JUnit. A good
introduction to JUnit can be found in the JUnit Cookbook. This Clover tutorial is crafted
around the example code described in the Cookbook.

The tutorial work area

The source files for this tutorial are located in the standard Clover distribution, under the
'tutorial' directory. In the 'tutorial' directory you will find the initial build file and the
directory 'src' which contains the java files that you will be testing. These sample files are
shipped with JUnit and described in the JUnit Cookbook. They represent a simple library for
dealing with money and provide methods to add, subtract, and collect money etc. The
MoneyTest.java file contains all the unit tests for the library and utilises the JUnit

Clover 1.3.13 User Manual

Page 137
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://www.apache.org/dist/ant/binaries/
http://www.junit.org/index.htm
http://www.junit.org/index.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

framework.

7.1.2. Part 1 - Measuring coverage with Clover

Introduction

Part 1 of the Clover Tutorial focuses on the creation and interpretation of 'Current' Clover
reports. Current reports display graphical and numerical data relating to the most recent
coverage data collected for the project. This tutorial covers the initial creation of coverage
data before stepping you through how to generate and interpret coverage reports. We'll the
look at how to improve the coverage achieved by tests and regenerate the coverage reports.
This section covers the very basic features of Clover and is an important first step for all
users.

In this tutorial we will be compiling and unit-testing the Money library provided in the
tutorial/src directory, then using Clover to determine how well the unit tests actually
test the library.

In the first step, we will compile the Money library and run tests against it.

Compiling and running

In this step we will compile the library and run the tests against it without using Clover to
check that everything is working correctly before including Clover in the next step. In the
tutorial directory you will find the initial build file which contains targets for compiling,
running and cleaning the build.

Compiling

To compile the java files use the command ant code.

Output should be similar to the following:

$ ant code
Buildfile: build.xml

code:
[mkdir] Created dir: c:\clover\tutorial\build
[javac] Compiling 4 source files to c:\clover\tutorial\build

BUILD SUCCESSFUL
Total time: 9 seconds

This shows that the java source files have been compiled and the class files have been placed
in the c:\clover\tutorial\build directory.

Clover 1.3.13 User Manual

Page 138
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Running the tests

To run the JUnit tests use the command ant test.

Output should be similar to the following:

$ ant test
Buildfile: build.xml

test:
[java]
[java] Time: 0.041

[java] OK (22 tests)

BUILD SUCCESSFUL
Total time: 3 seconds

This shows that all the tests have been run and have passed.

Note:
To keep things simple we are not using the optional <junit> task that ships with Ant to run the JUnit tests. The <junit> task
provides many advanced features for controlling the execution of unit tests and generating unit test reports. Modifying the
build.xml file to use the <junit> task is left as an exercise for the reader.

We have now compiled the Money library, and run tests against it. In the next step, we'll add
Clover targets and properties to the build file to enable measurement of code coverage.

Adding Clover targets

Now that we've compiled the code and run unit tests, we are ready to add Clover targets and
properties to the build file so we can measure the code coverage of the tests. Modifying the
build file is trivial. Firstly we need to add a target to enable and configure Clover for the
build.

Adding Clover task definitions

Load the build.xml file into your favourite text editor and add the Clover Ant task and
type definitions:

<taskdef resource="clovertasks"/>
<typedef resource="clovertypes"/>

These lines define the Clover Ant tasks which can then be used within the build file.

Clover 1.3.13 User Manual

Page 139
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Adding a target to enable Clover

Add a target called with.clover which will enable and configure Clover for a build:

<target name="with.clover">
<clover-setup initString="demo_coverage.db"/>

</target>

The initString value defines the location of the Clover coverage database. During
compilation, Clover stores information about all the artifacts in your sourcebase to this file. If
the database exists already, Clover updates it. If it doesn't exist, Clover will create a
fresh database file. When instrumented code is run, Clover uses this database to initialise
itself and then writes coverage recording files alongside the database file.

Adding Clover to the build classpath

The clover.jar needs to be in the runtime classpath when you execute the tests. To
achieve this, add the line in bold below to the build.classpath Ant path:

<path id="build.classpath">
<pathelement path="${ant.home}/lib/clover.jar"/>
<pathelement path="${ant.home}/lib/junit.jar"/>
<pathelement path="${build}"/>

</path>

Note:
This assumes that you have installed clover.jar in ANT_HOME/lib. If you've installed it elsewhere, adjust the path
accordingly.

Once you've made these changes, you can save the build.xml file. We will add some
more Clover targets later to perform coverage reporting, but first we'll re-compile the Money
library with Clover and re-run the tests to obtain coverage data.

Testing with Clover

We are now ready to measure the coverage of the tests over the Money library.

Compile with Clover

Ensure that your build has been cleaned by running ant clean. This deletes all class files
from previous compilations.

Compile your code with Clover using the command ant with.clover code.

Clover 1.3.13 User Manual

Page 140
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

You will get output similar to the following:

$ ant with.clover code
Buildfile: build.xml
with.clover:

compile:
[mkdir] Created dir: C:\clover\tutorial\build
[javac] Compiling 4 source files to C:\tutorial\build
[clover] Clover Version 1.x, built on ...
[clover] No coverage database 'C:\clover\tutorial\demo_coverage.db'

found. Creating a fresh one.
[clover] Clover all over. Instrumented 4 files.

The result of this process is that your source files have been instrumented by Clover and then
compiled as usual.

Running the tests

We now need to run the tests again (with the command ant test). This will run the tests,
this time measuring coverage. Output from Ant will be the same as a normal test run:

$ ant test
Buildfile: build.xml
run:

[java]
[java] Time: 0.08
[java] OK (22 tests)

BUILD SUCCESSFUL
Total time: 4 seconds

During this test run, Clover measured the code coverage of the tests and wrote the coverage
data to disk. In the next step we'll generate a coverage report from this data to see how well
the tests actually cover the Money library.

Creating a report

We are now ready to produce a coverage report. This section will focus on producing a
Clover HTML report. For information on how to generate other types of Clover reports see
the <clover-report> task.

Adding a Clover report target

Open the build.xml file in a text editor and add the following target to create a HTML
report:

<target name="report.html" depends="with.clover">

Clover 1.3.13 User Manual

Page 141
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

<clover-report>
<current outfile="clover_html" title="Clover demo">

<format type="html"/>
</current>

</clover-report>
</target>

The <current> element specifies that the type of report to be produced is a snapshot report
of the current coverage data (historical reports, which show the progress of coverage over the
life of the project, are discussed later in this tutorial (see Tutorial Part 2). The current report
is to be in HTML format, written to the directory clover_html and with the title Clover
demo. The output directory clover_html is relative to the path of the Ant build file. In
this case, the directory clover_html will be nested within tutorial as this is the
location of build.xml.

Generating the report

Create a HTML report with the command ant report.html. You will get output similar
to the following:

$ ant report.html
report.html:

[java] Clover Version 1.x, built on ...
[java] Reading data for database at

'c:\clover\tutorial\demo_coverage.db'
[java] Writing Html report to 'c:\clover\tutorial\clover_html'
[java] Done. Processed 1 packages.

BUILD SUCCESSFUL
Total time: 3 seconds

You can now view the report by opening the file
tutorial\clover_html\index.html in a web browser. The next few sections of
the tutorial will show you how to interpret the report and use it to improve the Money library
unit tests.

Interpreting the report

We will now look at how to interpret the HTML report that you generated in the previous
step.

The screenshot below shows the generated HTML report in a browser. In the top left hand
corner is the list of packages. You can view all classes in the project or select a particular
package to view. Clicking on the name of a package will bring up the relevant classes in the
frame below it. Selecting one of these classes will bring up the source code in the frame on
the right.

Clover 1.3.13 User Manual

Page 142
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

The header provides summary information relating to the current project. The left hand side
displays the report title and the time of the coverage contained in the report. For current
reports the timestamp is the timestamp of the most recent run of tests. The right hand side of
the header displays metrics for the package, file or project overview which is currently
selected. Depending on the current selection, the metrics include all or a subset of: Number
of Lines of Code (LOC), Number of Non-commented Lines of Code (NCLOC), Number of
Methods, Number of Classes, Number of Files and Number of Packages.

The screenshot shows the report for the Money.java source file with the green and red bar
at the top showing the amount of code coverage on this class. The method, statement and
conditional coverage percentages are beside this.

Clover 1.3.13 User Manual

Page 143
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

coverage measured for the Money class

The left-most column shows line numbers and those that contain executable content are
highlighted in blue. The second column shows the number of times a particular line has been
executed during the test run. As you can see, lines 15-17 have been run 156 times by the
JUnit tests, whereas line 28 has only been run twice.

If a line is never executed or has only been partially executed, the entire line of code will be
highlighted in red. Depending on your browser, you can hover the mouse over a line to get a
popup describing in detail the coverage information for that line. The following screenshot

Clover 1.3.13 User Manual

Page 144
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

shows the coverage on a section of the MoneyBag.java source file:

code not executed

Although line 52 of the above MoneyBag class has been executed 14 times, the method
isZero() has never evaluated to true so it has not been fully tested. Therefore it, and the
following two lines, are highlighted. This is also the case with lines 58 and 59.

This highlighting feature makes it easy for you to see which parts of the code have not been
fully exercised by your tests so that you can then improve testing to provide better code
coverage.

If any of the lines shaded red contained a bug, they may never be detected because the
tests as they are don't test those parts of the code.

In the next step, we will enhance the JUnit tests to improve code coverage of the Money
library.

Improving coverage

After having a look at the coverage report generated in the last step, you'll notice that
coverage is not 100%. Although not always possible, it is best to get as close to full coverage
as you can. Think of it this way: every line that isn't covered could contain a bug that will

Clover 1.3.13 User Manual

Page 145
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

otherwise make it into production. You should certainly aim to cover all of the code that
will be executed under normal operation of the software.

One method in the Money library that is not fully covered is the equals() method in the
Money class (lines 40-42 as seen below). The first few lines of this method handle the special
case when the Money value is zero. The coverage report shows that the code to handle this
has not been covered by the tests. Line 40 has been executed 27 times but since it has never
evaluated to true it has not been fully covered and is therefore in red. It follows then that the
two successive lines have never been executed.

lines not covered in money class

We can now improve the tests so that this section of code is covered. To do this, make the
following additions (shown in bold) to the MoneyTest.java file.

Declare the variable f0USD:

public class MoneyTest extends TestCase {
private Money f12CHF;
private Money f14CHF;
private Money f7USD;
private Money f21USD;
private Money f0USD;

...

Initialise f0USD in the setUp() method:

Clover 1.3.13 User Manual

Page 146
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

protected void setUp() {
f12CHF = new Money(12, "CHF");
f14CHF = new Money(14, "CHF");
f7USD = new Money(7, "USD");
f21USD = new Money(21, "USD");
f0USD = new Money(0, "USD");

...

Finally, the following test needs to be added:

public void testMoneyEqualsZero() {
assertTrue(!f0USD.equals(null));
IMoney equalMoney = new Money(0, "CHF");
assertTrue(f0USD.equals(equalMoney));

}

After these amendments have been made, compile (by running ant with.clover
code) and run the tests again (by running ant test) and then re-generate the HTML
report (by running ant report.html). You will see that the Money class now has 100%
coverage.

7.1.3. Part 2 - Historical Reporting

Introduction

Part 2 of the Clover Tutorial focuses on the creation and interpretation of 'Historical' Clover
reports. Historical reports display graphical and numerical data relating to sets of coverage
data collected over time for the project. This tutorial covers the generation of a set of
historical data, interpretation of the information displayed in the Historical reports and
customisation of the reports for your particular reporting preferences.

In the first step, we'll edit the Ant build file to generate a History Point.

Creating history points

A history point is a snapshot of code coverage and metrics data for the project at a particular
point in time. By running tests with Clover over time and creating a series of history points, it
is possible to compare code coverage and metrics by viewing results in a single Clover report
and enabling you to track the development of your project. The generation of historical
reports is discussed in latersections. In the meantime, this section demonstrates how to set up
the relevant Ant target and run the command so that a history point can be created.

Adding a history point target

Add the following target to your build.xml file:

Clover 1.3.13 User Manual

Page 147
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

<target name="record.point" depends="with.clover">
<clover-historypoint historyDir="clover_history"/>

</target>

When this target is run, a history point will be created with the timestamp value of the
coverage run.

The value of historyDir is the directory where the history points will be stored. You
should create this directory before executing this target.

Note:
By default Clover records the history point with a timestamp of the coverage run. If you wish to override the timestamp value
of a history point, you can add date and dateformat attributes to the task allowing you to reconstruct coverage history. See
documentation for the <clover-historypoint> task for details.

Recording a history point

Ensure that the source code has been instrumented and the tests run with the commands ant
with.clover code and ant test respectively.

Run the command ant record.point. Output should be similar to the following:

$ ant record.point
Buildfile: build.xml

with.clover:

record.point:
[clover-historypoint] Clover Version 1.x, built on ...

[clover-historypoint] Merged results from 2 coverage recordings.
[clover-historypoint] Writing report to
'C:\tutorial\clover_history\clover-20030307111326.xml'
[clover-historypoint] Done.

BUILD SUCCESSFUL
Total time: 2 seconds

In the next step we'll add more tests to improve coverage of the Money Library, recording
Clover history points along the way.

Generating historical data

In Part 1 of the tutorial we made additions to the testing suite to improve code coverage. In
order to show the historical reporter in use, we will now continue to add tests and
periodically record history points which will later be used as code coverage and metrics data
by the historical reporter.

Clover 1.3.13 User Manual

Page 148
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

The Money.java file is at 100% coverage, however there are several sections of code that
remain untested in the MoneyBag.java file. These uncovered lines of code are shown
below in red. This section will focus on bringing the coverage of this class to 100% as well
as creating historical data in the form of history points.

money not covered 1

money not covered 2

Open the source file MoneyTest.java in your favourite text editor and make the
following additions shown in bold:

Declare the variables f0CHF and fMB3:

Clover 1.3.13 User Manual

Page 149
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

public class MoneyTest extends TestCase {
private Money f12CHF;
private Money f14CHF;
private Money f7USD;
private Money f21USD;
private Money f0USD;
private Money f0CHF;

private IMoney fMB1;
private IMoney fMB2;
private IMoney fMB3;

...

Initialise f0CHF and fMB3 in the setUp() method:

protected void setUp() {
f12CHF = new Money(12, "CHF");
f14CHF = new Money(14, "CHF");
f7USD = new Money(7, "USD");
f21USD = new Money(21, "USD");
f0USD = new Money(0, "USD");
f0CHF = new Money(0, "CHF");

fMB1 = MoneyBag.create(f12CHF, f7USD);
fMB2 = MoneyBag.create(f14CHF, f21USD);
fMB3 = MoneyBag.create(f0CHF, f0USD);

...

Add the following test:

public void testMoneyBagEqualsZero(){
assertTrue(!fMB3.equals(null));
IMoney expected = MoneyBag.create(new Money(0, "CHF"),

new Money(0, "USD"));
assertTrue(fMB3.equals(expected));

}

After making the above changes, reinstrument and test your code by running ant
with.clover code and ant test respectively. Then record a new history point by
running ant record.point. By recording a history point now, Clover will capture the
new state of code coverage and metrics for comparison with past or future runs.

Add the following tests to bring the coverage of the Money project to 100%:

public void testToString(){
String expected="{[12 CHF][7 USD]}";
assertEquals(expected, fMB1.toString());

}

public void testVectorSize(){
IMoney other = MoneyBag.create(new Money(2, "CHF"),

Clover 1.3.13 User Manual

Page 150
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

new Money(2, "USD"));
assertTrue(!other.equals(fMB3));

}

Once again, reinstrument your code, test and record a new history point.

We have now created a series of history points for the Money library. The next section
discusses how to generate a Clover historical report which will display the historical data that
has been collected.

Creating historical reports

Now that we have recorded several history points, the next step is to add a target to the build
file which will call the historical reporter and generate a historical report.

Add a historical report target

Add the following target to build.xml:

<target name="hist.report" depends="with.clover">
<clover-report>

<historical outfile="historical.pdf"
historyDir="clover_history"/>

</clover-report>
</target>

The hist.report target is similar to the report.html target defined in Part 1. The
main differences are that the nested element specifies <historical> rather than
<current> and there is no specification of the output format as html.

The historical reporter needs to be able to find the coverage history files in order to create the
report so the historyDir value must be the same as the historyDir defined for the
history points. The format of the report can be either PDF or HTML as specified by the
<format> element. The <format> element is optional and is not included in the example
above. When the <format> element is omitted, a PDF report is produced by default.
Depending on the chosen format, the outfile value may represent a single file as in the
case of the PDF format, or the name of a directory (in the case of the HTML format).

Generating a historical report

Create a historical report by using the command ant hist.report. Output should be
similar to the following:

$ ant hist.report
Buildfile: build.xml

Clover 1.3.13 User Manual

Page 151
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

with.clover:

hist.report:
[clover-report] Clover Version 1.x, built on ...
[clover-report] Writing report to 'C:\tutorial\historical.pdf'
[clover-report] Merged results from 2 coverage recordings.
[clover-report] Done. Processed 1 packages.
[clover-report] Writing historical report to 'C:\tutorial\historical.pdf'
[clover-report] Read 3 history points.
[clover-report] Done.

BUILD SUCCESSFUL
Total time: 8 seconds

The report can now be viewed by opening the file tutorial\historical.pdf in a
PDF viewer such as Adobe Acrobat Reader. We'll look at how to interpret this report in the
next section.

Interpreting historical reports

We will now look at interpreting the report that you generated in the previous step by
enabling the report in an appropriate PDF viewer. When you view the report you should see a
picture similar to the screenshot below, although it is likely that the the graphs that you
produce will contain different values.

Like the 'current' report, the historical report begins with a header containing relevant project
information. This includes the report title, the project metrics and the period for which
history points are included in the report. Below this header is the Project Overview Chart
which shows the branch, statement, method and total coverage percentages for the project for
the most recent history point included in the report.

The 'Coverage over time' graph shows the percentage values of branch, statement, method
and total coverage for each history point and plots them against time in an easy-to-read chart.

Clover 1.3.13 User Manual

Page 152
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://www.adobe.com

historical chart overview and coverage

The 'Metrics over time' graph shows the project statistics for each history point plotted
against time. It is therefore possible to observe changes in metrics such as the number of
methods. In the example below, the number of methods can be seen shown in green.

Clover 1.3.13 User Manual

Page 153
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

metrics and movers

The final section, 'Movers', displays classes that have increased or decreased in coverage by
more than a specified percentage point threshold over a particular time interval, the default
being 1 percentage point over the two latest history points. In this case there have not been
any classes which have lost more than 1 percentage point coverage, hence the only item
displayed here is the Money package which has gained 10.6 percentage points coverage over
the two latest history points.

The next section of this tutorial will discuss how you can customise many aspects of the

Clover 1.3.13 User Manual

Page 154
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

historical report.

Customising historical reports

In the previous sections of this tutorial we've looked at how to create and interpret a basic
historical report. In addition to basic reporting, the historical reporter is highly configurable
and this section will detail some of the options you can use. For a full list of the report
configuration options see the documentation for the <clover-report> task.

Changing output format

The default historical report type is PDF although an html report can also be produced. To
create an html report, add a nested <format> element with type specified as html to your
<clover-report> element. Try adding the following target to your build.xml file
and executing the command ant hist.report.html:

<target name="hist.report.html" depends="with.clover">
<clover-report>

<historical outfile="clover_html/historical"
title="My Project"
historyDir="clover_history">

<format type="html"/>
</historical>

</clover-report>
</target>

A custom title can also be displayed for your report by using the title attribute in the
<historical> element as above.

Chart Selection

The historical reporter allows you to specify which charts to include in your report and also
allows you to configure further options in the charts themselves.

The default reporting mode is to include all four report elements: <overview>,
<coverage>, <metrics> and <movers>. But to include some and not the others is a
simple matter of nesting the desired elements within the <historical> element. Try
adding the following target to your build.xml file as an example:

<target name="hist.report.coverage" depends="with.clover">
<clover-report>

<historical outfile="histCoverage.pdf"
title="My Project"
historyDir="clover_history">

<overview/>
<coverage/>

Clover 1.3.13 User Manual

Page 155
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

</historical>
</clover-report>

</target>

The above code will produce a historical PDF report with the title 'My Project' which
includes only two sections: the 'Overview' and the 'Coverage over time' charts.

Chart Configuration

The 'Coverage over time' and 'Metrics over time' charts also allow you to choose which
metrics information should be included. The default elements for the coverage chart are
branches, statements, methods and total, while the default elements for the
metrics chart are loc, ncloc, methods and classes. By using the include
attribute you can specify the required configuration:

<target name="hist.report.select" depends="with.clover">
<clover-report>

<historical outfile="histSelect.pdf"
title="My Project"
historyDir="clover_history">

<coverage include="total"/>
<metrics include="methods, packages"/>

</historical>
</clover-report>

</target>

This will produce a PDF file with the filename 'histSelect.pdf' with two sections: the
'Coverage over time' chart with total coverage information; and the 'Metrics over time' chart
with method and package information. You can also specify whether or not a chart uses a log
scale by adding the logscale attribute:

<metrics include="methods, packages" logscale="false"/>

'Movers' Configuration

The 'Movers' section of the historical report shows you the classes whose coverage has
changed the most recently. This is useful for spotting classes that have had sudden changes in
coverage, perhaps the unintended result of changes to the unit test suite.

The 'Movers' chart allows you to specify the threshold of point change a class must satisfy,
the maximum number of gainers and losers to display and the period across which the gains
and losses are calculated. Add the following target to your build.xml file as an example
of this feature in use:

<target name="hist.report.movers" depends="with.clover">
<clover-report>

<historical outfile="histMovers.pdf"

Clover 1.3.13 User Manual

Page 156
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

title="My Project"
historyDir="clover_history">

<movers threshold="5%" range="20" interval="2w"/>
</historical>

</clover-report>
</target>

In this case, the configuration values selected state that classes must have a change in
coverage of at least 5 percentage points to be included in the chart, a maximum of 20 gainers
and 20 losers can be displayed, and the initial valuation point for class coverage is 2 weeks
prior to the most recent history point. Should there be greater than 20 gainers in this period,
then the classes with the biggest percentage point gain will be displayed, and the same for the
losers.

See Interval Format for details on the syntax for specifying interval values.

The next section of this tutorial will discuss how you can automate the coverage checking of
your project.

7.1.4. Part 3 - Advanced Features

Introduction

This section looks a some advanced features of Clover.

• Automating coverage checking

Automating coverage checking

The <clover-check> task provides a useful mechanism for automating your coverage
checking and gives you the option of failing your build if the specified coverage percentage
is not met. It is easily integrated into your build system.

Adding coverage checking

Ensure that you have current Clover coverage data so that you can check the coverage
percentage for your project. Clover coverage data is generated as described in Part 1 of the
Tutorial.

Add the <clover-check> task to your build by specifying a target similar to the
following:

<target name="clover.check" depends="with.clover">
<clover-check target="80%"/>

</target>

This configuration sets an overall project target of 80% coverage

Clover 1.3.13 User Manual

Page 157
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Use the command ant clover.check to run the check. If your test coverage satisfies the
target coverage percentage, output will be similar to the following:

$ ant clover.check
Buildfile: build.xml

with.clover:

clover.check:
[clover-check] Merged results from 1 coverage recording.
[clover-check] Coverage check PASSED.

BUILD SUCCESSFUL
Total time: 2 seconds

If your coverage percentage does not reach the coverage target, you'll get something like this
instead:

$ ant clover.check
Buildfile: build.xml

with.clover:

clover.check:
[clover-check] Merged results from 1 coverage recording.
[clover-check] Coverage check FAILED
[clover-check] The following coverage targets were not met:
[clover-check] Overall coverage of 74% did not meet target of 80%

BUILD SUCCESSFUL
Total time: 2 seconds

In order to try this out on the Money Library used in this tutorial, try commenting out some
of the tests in the MoneyTest.java file to create a situation where the code coverage does
not reach 80%.

Failing the build if coverage criteria not met

In the above situation where the target is not met, after the message has been written to
output, the build for the specified target will continue as normal.

Adding the haltOnFailure attribute allows you to specify whether or not you want the
build to fail automatically if the coverage target is not met. The default for
haltOnFailure is false.

<target name="clover.check.haltonfail" depends="with.clover">
<clover-check target="80%" haltOnFailure="true"/>

</target>

Clover 1.3.13 User Manual

Page 158
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

The failureProperty attribute of the <clover-check> task allows you to set a
specified property if the target of the project is not met:

<target name="clover.check.setproperty" depends="with.clover">
<clover-check target="80%" failureProperty="coverageFailed"/>

</target>

In this case, if the coverage does not reach 80%, the property coverageFailed will have
its value set to the coverage summary message "Overall coverage of *% did not meet target
of 80%". This allows you to check the value of this property in other Ant targets and manage
the outcome accordingly. For an example on managing the resulting actions for a project
which does not meet its coverage target see Using Clover in Automated Builds.

Adding Package-level coverage criteria

The <clover-check> task also allows you to specify the desired percentage covered for
different packages, which comes in useful if you have certain packages that have more or less
stringent coverage requirements than the rest of the project. This is done by adding nested
'package' elements like the following:

<target name="clover.check.packages" depends="with.clover">
<clover-check target="80%">

<package name="com.clover.example.one" target="70%"/>
<package name="com.clover.example.two" target="40%"/>

</clover-check>
</target>

Context filtering

The <clover-check> task allows you to prescribe a filter that excludes coverage from certain
block-types from overall coverage calculations. See Coverage Contexts for more
information. The filter attribute accepts a comma separated list of the contexts to exclude
from coverage calculations.

<target name="clover.check.nocatch" depends "with.clover">
<clover-check target="80%" filter="catch"/>

</target>

This will run clover coverage percentage check as normal but will calculate coverage with
omission of all 'catch' blocks.

Clover 1.3.13 User Manual

Page 159
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

8. Miscellaneous

8.1. Swing Viewer

8.1.1. Overview

The Swing Viewer is a standalone coverage viewer that allows you to browse coverage
results and generate coverage reports.

Launching the viewer from Ant

Add the following target to your build file:

<target name="clover.view" depends="with.clover">
<clover-view/>

</target>

The viewer can then be launched with ant clover.view.

Note:
This assumes you have added a with.clover target to your build that initialises Clover. See the for more details.

Launching the viewer from the Command Line

To launch the Swing viewer from the command line:

java com.cenqua.clover.reporters.jfc.Viewer <initstring>

The swing viewer will appear in a new frame which will look like the following (sections of
this image are displayed in greater detail below):

Clover 1.3.13 User Manual

Page 160
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

swing viewer screenshot

Package View

In the top left hand corner you will see the Project Package View which gives you a quick
snapshot of the coverage percentage of each package. The two buttons on the left below the
Package View allow you to choose between a nested view of the packages or a flat view. The
button on the left will display the packages in a hierachical structure whereas the button to
the right will display each package separately.

Clover 1.3.13 User Manual

Page 161
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

project package view

The 'refresh' button will reread coverage data and will update the display accordingly. This
allows you to change, re-compile and test code while the swing viewer is running and then
instantly see the new code coverage results.

Clicking on the filter button opens up a new frame that allows you to filter the displayed
coverage. The context filter allows you to select certain blocks to ignore when calculating
coverage, and the coverage filter allows you to specify a level of coverage that needs to be
achieved before the class is displayed. Once the filtering has been selected, click 'Apply' to

Clover 1.3.13 User Manual

Page 162
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

see the results. 'Reset' will return to the default settings, and 'Cancel' will leave the settings as
they were.

Double-clicking on a package or selecting the icon to the left of the package name will
display all the files that exist within that package. These files can then be selected and the file
will appear in the window to the right for closer examination (see Code View section below).

Coverage and Metrics

Depending on the current selection in the Package View, the relevant coverage details and
statistics will be displayed in the two sections below the project packages.

coverage and metrics details

The coverage details show the method, statement and conditional coverage. The statistics in
the bottom left give the metrics of the selection in the project package section and provide
details such as the number of lines of code, number of classes, etc.

Code View

The window on the right of the Swing Viewer (shown below), which displays your selected

Clover 1.3.13 User Manual

Page 163
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

file, allows you to see exactly which sections of your code remain uncovered, much like the
HTML Reporter. The name and location of the file are shown at the top of this window, and
clicking on the left and right arrows below this allow you to cycle through the coverage of
one file. The check boxes beside this can be used to omit or include method, statement or
conditional coverage.

Clover 1.3.13 User Manual

Page 164
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Clover 1.3.13 User Manual

Page 165
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

class code view

The non-comment lines of code have their numbers highlighted in blue and beside this is the
number of times a line has been executed. This second number is highlighted in red if the line
has never been executed, and blue otherwise.

The 'quick jump' bar on the furthest right of this window highlights lines that have not been
covered by the testing. Clicking on the dashes beside these lines allows you to instantly skip
to the uncovered sections of code.

8.1.2. Generating Reports

The Swing Viewer can be used for generating other types of reports.

To generate reports, click on 'File' and select 'Generate other reports'. This will bring up a
new frame allowing you to choose which sort of report you want to generate and also
configure other options relevant to specific reports.

report generation options

For all three report types that you can generate, you must specify an output path. For
XML/PDF, this is a file, and for html, this is a directory. You can also add a report title if you
wish. By clicking the 'Filter' button you can again select specific blocks to exclude when
generating the report.

Clover 1.3.13 User Manual

Page 166
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

The XML report gives you the option of including line information which details the line
number, the line type (method/statement/conditional) and the execution count (in the case of
a conditional, the true count and the false count).

When generating the HTML report you can select whether or not you want the source files to
be shown, including coverage information, by checking the 'Show source' check box. You
can also choose to sort the classes alphabetically, by ascending coverage, or descending
coverage.

To generate the report simply click 'Generate' and a pop-up will be displayed saying the type
of report generated and the path of that report. If, for instance, you select an invalid path, a
relevant error message will be displayed detailing the problem.

successful generation

You can now view the generated report by opening it in a relevant application.

8.2. Interval Format

The interval type is used to specify a period of time. It consists of a value and a unit specifier,
eg. "3 days". The Interval type is very flexible about how it interprets the time unit. In
general, the first letter is sufficient to indicate the interval unit. For example, the previous
example could be written as "3 d". The time ranges supported are specified in the following
table

Unit specifier Abbrev. Example Values

second s 3 seconds 20s

minute m 5 minute 7 min, 11m

hour h 4 hours 2h

day d 7 days 365d

week w 4 weeks 10w

Clover 1.3.13 User Manual

Page 167
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

month mo 5.6 months 24mo

year y 100 years 5y

If no time unit is provided the default unit of "days" is used. A numeric value must always be
provided or an exception will be thrown. Numeric values may be fractional (eg. 5.6).

Note:
Due to the variable lengths of months and years, approximations are used for these values within Clover. A month is
considered to be 30.346 days and a year is considered to be 365.232 days. All other units are exact.

8.3. Frequently Asked Questions

8.3.1. Questions

1. General
• Can't find an answer here?
• What is Code Coverage Analysis?
• What are the limitations of Code Coverage?
• Where did Clover originally come from?
• Why the name "Clover"?

2. Technical Background
• Does Clover depend on JUnit?
• Does Clover work with JUnit4 and TestNG?
• Why does Clover use Source Code Instrumentation?
• Will Clover integrate with my IDE?
• Does Clover integrate with Maven?
• What 3rd Party libraries does Clover utilise?
• How are the Clover coverage percentages calculated?
• Does Clover support the new language features in JDK1.5?

3. Troubleshooting
• Two questions to ask yourself first when troubleshooting Clover:
• When using Clover from Ant, why do I get "Compiler Adapter

'org.apache.tools.ant.taskdefs.CloverCompilerAdapter' can't be
found." or similar?

• When using Clover, why do I get a java.lang.NoClassDefFoundError
when I run my code?

• When generating some report types on my unix server with no XServer, I get an
exception "Can't connect to X11 server" or similar.

• Why do I get 0% coverage when I run my tests and then a reporter from the same
instance of Ant?

Clover 1.3.13 User Manual

Page 168
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

• Why do I get an java.lang.OutOfMemoryError when compiling with Clover
turned on?

• For some statements in my code Clover reports "No Coverage information gathered
for this expression". What does that mean?

• Why does Clover instrument classes I have excluded using the <exclude> element of
the <clover-setup> task?

• I'm trying to get a coverage report mailed to the team as shown in your example, but I
keep getting "[mail] Failed to send email". How do I fix this?

8.3.2. Answers

1. General

1.1. Can't find an answer here?

Try our Online Forums, or contact us directly.

1.2. What is Code Coverage Analysis?

Code Coverage Analysis is the process of discovering code within a program that is not
being exercised by test cases. This information can then be used to improve the test suite,
either by adding tests or modifying existing tests to increase coverage.

Code Coverage Analysis shines a light on the quality of your unit testing. It enables
developers to quickly and easily improve the quality of their unit tests which ultimately leads
to improved quality of the software under development.

A good introduction to the various types of Code Coverage Analysis can be found here.

1.3. What are the limitations of Code Coverage?

Code Coverage is not a "silver bullet" of software quality, and 100% coverage is no
guarantee of a bug free application. You can infer a certain level of quality in your tests
based on their coverage, but you still need to be writing meaningful tests.

As with any metric, developers and project management should be careful not to
over-emphasize coverage, because this can drive developers to write unit tests that just
increase coverage, at the cost of actually testing the application meaningfully.

1.4. Where did Clover originally come from?

Clover was originally developed at Cenqua as an internal tool to support development of

Clover 1.3.13 User Manual

Page 169
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

http://www.cenqua.com/forums/
mailto:clover-support@cenqua.com
http://www.bullseye.com/coverage.html

large J2EE applications. Existing tools were found to be too cumbersome to integrate with
complex build systems and often required specialized development and/or runtime
environments that were not compatible with target J2EE Containers. Another feature that we
found lacking in other tools was simple, source-level coverage reporting - the kind that is
most useful to developers.

1.5. Why the name "Clover"?

Clover is actually a shortened version of the tool's original name, "Cover Lover", from the
nick name that the tool's author gained while writing Clover ("Mr Cover Lover").

2. Technical Background

2.1. Does Clover depend on JUnit?

Clover has no dependence on JUnit. We mention it frequently in our documentation only
because of JUnit's widespread use in the Java dev community. You can certainly instrument
your code and run it however you like; Clover will still record coverage which can then be
used to generate reports.

2.2. Does Clover work with JUnit4 and TestNG?

Clover is fully compatible with JUnit4 and TestNG.

2.3. Why does Clover use Source Code Instrumentation?

Source code instrumentation is the most powerful, flexible and accurate way to provide code
coverage analysis. The following table compares different methods of obtaining code
coverage and their relative benefits:

Possible feature JVMDI/PI Bytecode
instrumentation

Source code
instrumentation

gathers method
coverage

yes yes yes

gathers statement
coverage

line only indirectly yes

gathers branch
coverage

indirectly indirectly yes

can work without
source

yes yes no

Clover 1.3.13 User Manual

Page 170
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

requires separate build no no yes

requires specialized
Runtime

yes yes no

gathers source metrics no no yes

view coverage data
inline with source

not accurate not accurate yes

source level directives
to control coverage
gathering

no no yes

control which entities
are reported on

limited limited yes

compilation time no impact variable variable

runtime performace high impact variable variable

Container friendly no no yes

2.4. Will Clover integrate with my IDE?

Clover provides integrated plugins for IntelliJ IDEA 4.x and 5.x, NetBeans, and Eclipse,
JBuilder and JDeveloper. Clover should also work happily with any IDE that provides
integration with the Ant build tool.

2.5. Does Clover integrate with Maven?

There is a Clover Plugin for Maven and Maven2 - both are independent open source
developments supported by Cenqua. See the Maven and Maven2 websites for details.

2.6. What 3rd Party libraries does Clover utilise?

Clover makes use of the following excellent 3rd party libraries:

Jakarta Velocity 1.2 Templating engine used for Html report
generation.

Antlr 2.7.1 A public domain parser generator.

iText 0.96 Library for generating PDF documents.

Jakarta Ant The Ant build system.

Clover 1.3.13 User Manual

Page 171
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

Note:
To prevent library version mismatches, all of these libraries have been obfuscated and/or repackaged and included in the clover
jar. We do this to prevent pain for users that may use different versions of these libraries in their projects.

2.7. How are the Clover coverage percentages calculated?

The "total" coverage percentage of a class (or file, package, project) is provided as a quick
guide to how well the class is covered - and to allow ranking of classes. The Total Percentage
Coverage (TPC) is calculated using the formula:

TPC = (CT + CF + SC + MC)/(2*C + S + M)

where

CT - conditionals that evaluated to "true" at least once
CF - conditionals that evaluated to "false" at least once
SC - statements covered
MC - methods entered

C - total number of conditionals
S - total number of statements
M - total number of methods

2.8. Does Clover support the new language features in JDK1.5?

Clover fully supports all JDK1.5 language features.

3. Troubleshooting

3.1. Two questions to ask yourself first when troubleshooting Clover:

1. Does my code compile and run as expected without Clover?
You need to ensure that your project compiles and runs as expected before attempting to
use Clover.

2. Am I using the latest version of Clover?
The latest version of Clover incorporates many bugfixes and improvements.

If the answers in this section don't fix the problem you are encountering, please don't hesitate
to contact us.

3.2. When using Clover from Ant, why do I get "Compiler Adapter
'org.apache.tools.ant.taskdefs.CloverCompilerAdapter' can't be found." or similar?

You need to install Clover in Ant's classpath. Depending on what version of Ant you are

Clover 1.3.13 User Manual

Page 172
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

mailto:clover-support@cenqua.com

using, there are several options to do this. See Installation Options

3.3. When using Clover, why do I get a java.lang.NoClassDefFoundError when I run
my code?

This probably indicates that you do not have clover.jar in your runtime classpath. See
Classpath Issues

3.4. When generating some report types on my unix server with no XServer, I get an
exception "Can't connect to X11 server" or similar.

This is a limitation of the Java implementation on Unix. Prior to JDK 1.4, the java graphics
toolkit (AWT) requires the presence of an XServer, even in the case where no "on-screen"
graphics are rendered. With JDK1.4, you can set the System property
java.awt.headless=true to avoid this problem. When running Ant, this is most easily
achieved by using the ANT_OPTS environment variable:
export ANT_OPTS=-Djava.awt.headless=true

When running your code outside Ant, you may also need to set this system property.

With earlier JDKs, you need to use a virtual X Server. See
http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html#xvfb.

3.5. Why do I get 0% coverage when I run my tests and then a reporter from the same
instance of Ant?

This occurs because Clover hasn't had a chance to flush coverage data out to disk. By default
Clover flushes coverage data only at JVM shutdown or when explicitly directed to (using a
inline directive). The simplest thing to do is to use the fork="true" attribute when running
your tests. The tests will be then run in their own JVM, and the coverage data will be flushed
when the that JVM exits. Alternatively, you can use interval-based flushing by changing the
Flush Policy.

3.6. Why do I get an java.lang.OutOfMemoryError when compiling with Clover
turned on?

Instrumenting with Clover increases the amount of memory that the compiler requires in
order to compile. To solve this problem, you need to give the compiler more memory.
Increasing the memory available to the compiler depends on how you are launching the
compiler:
If you are using the "in-process" compiler (the <javac> task with the "fork" attribute set to
false), you will need to give Ant itself more memory to play with. To do this, use the

Clover 1.3.13 User Manual

Page 173
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

ANT_OPTS environment variable to set the heap size of the JVM used to run Ant:
export ANT_OPTS=-Xmx256m

If you are using an external compiler (the <javac> task with the "fork" attribute set to true),
you can set the memoryInitialSize and memoryMaximumSize attributes of the javac task:

<javac srcdir="${src}"
destdir="${build}"
fork="true"
memoryInitialSize="128m"
memoryMaximumSize="256m"/>

3.7. For some statements in my code Clover reports "No Coverage information
gathered for this expression". What does that mean?

Clover will not measure coverage of a conditional expression if it contains an assignment
operator. In practice we have found this only a minor limitation. To understand why Clover
has this limitation, consider the following (very contrived) code fragment:

1 public int foo(int i) {
2 int j;
3 if ((j = i) == 1) {
4 return j;
5 }
6 return 0;
7 }

at (2) the variable "j" is declared but not initialised.
at (3) "j" is assigned to inside the expression
at (4) "j" is referenced.

During compilation, most compilers can inspect the logic of the conditional at (3) to
determine that "j" will be initialised by the time it is referenced (4), since evaluating the
expression (3) will always result in "j" being given a value. So the code will compile. But
Clover has to rewrite the conditional at (3) so that it can measure coverage, and the rewritten
version makes it harder for compilers to infer the state of "j" when it is referenced at (4). This
means that the instrumented version may not compile. For this reason, Clover scans
conditionals for assignment. If it one is detected, the conditional is not instrumented.

3.8. Why does Clover instrument classes I have excluded using the <exclude> element
of the <clover-setup> task?

There are two possible causes.

1. Cascading build files:

Clover uses Ant patternsets to manage the includes and excludes specified in the
clover-setup task. By default Ant does not pass these patternsets to the sub-builds. If you

Clover 1.3.13 User Manual

Page 174
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

are using a master-build/sub-build arrangement, with compilation occuring in the
sub-builds and <clover-setup> done in the master-build, you will need to explicitly pass
these patternsets as references:

<ant ...>
<reference refid="clover.files"/>
<reference refid="clover.useclass.files"/>

</ant>
2. Excluded files are still registered in the Clover database:

Clover's database is built incrementally, and this can mean that files that are now
excluded but were previously included are still reported on. The simple workaround is to
delete the Clover database whenever you change the clover includes or excludes. This is
fixed in Clover 1.2.

3.9. I'm trying to get a coverage report mailed to the team as shown in your example,
but I keep getting "[mail] Failed to send email". How do I fix this?

The Ant <mail> task depends on external libraries that are not included in the Ant
distribution. You need to install the following jars in ANT_HOME/lib, both freely available
from Sun:

1. mail.jar - from the JavaMail API (http://java.sun.com/products/javamail/)
2. activation.jar - from the JavaBeans Activation Framework

(http://java.sun.com/products/javabeans/jaf/index.jsp)

You should also check the details of your local SMTP server with your SysAdmin. It may
help to specify these details directly to the <mail> task:

<mail mailhost="smtp.myisp.com" mailport="25" from="build@example.com"
tolist="team@example.com" subject="coverage criteria not met"
message="${coverageFailed}" files="coverage_summary.pdf"/>

Clover 1.3.13 User Manual

Page 175
Copyright © 2002-2007 Cenqua Pty Ltd. All rights reserved.

	1 Introduction
	1.1 Starting Points
	1.1.1 System Requirements
	1.1.2 Installing your license file
	1.1.3 Acknowledgements

	2 Code Coverage
	2.1 Code Coverage
	2.1.1 What is Code Coverage?
	2.1.2 Why Measure Code Coverage?
	2.1.3 How Code Coverage Works
	2.1.4 Code Coverage with Clover
	2.1.4.1 Types of Coverage measured

	3 Clover with Ant
	3.1 Quick Start Guide for Ant
	3.1.1 Install Clover
	3.1.2 Add Clover targets
	3.1.3 Compile and run with Clover
	3.1.4 Generate a Coverage Report

	3.2 Installation Options
	3.2.1 Ant 1.4.1, 1.5.x
	3.2.2 Ant 1.6.x
	3.2.2.1 Installing Clover locally for a single user
	3.2.2.2 Installing Clover at an arbitary location

	3.2.3 Adding Clover to Ant's classpath from build.xml
	3.2.4 Checking if Clover is available for the build

	3.3 Usage Scenarios
	3.3.1 Using Clover Interactively
	3.3.1.1 Measuring coverage on a subset of source files
	3.3.1.2 Viewing source-level code coverage quickly
	3.3.1.3 Viewing summary coverage results quickly
	3.3.1.4 Incrementally building coverage results

	3.3.2 Using Clover in Automated Builds
	3.3.2.1 Detailed coverage reports for the whole team
	3.3.2.2 Executive summary coverage reports
	3.3.2.3 Historical coverage and project metrics reporting
	3.3.2.4 Coverage criteria checking and triggers

	3.4 Ant Task Reference
	3.4.1 Clover Ant Tasks
	3.4.1.1 Installing the Ant Tasks
	3.4.1.2 The tasks

	3.4.2 <clover-setup>
	3.4.2.1 Description
	3.4.2.2 Parameters
	3.4.2.3 Nested Elements of <clover-setup>
	3.4.2.3.1 <files>
	3.4.2.3.2 <fileset>
	3.4.2.3.3 <methodContext>
	3.4.2.3.3.1 Parameters

	3.4.2.3.4 <statementContext>
	3.4.2.3.4.1 Parameters

	3.4.2.4 Examples
	3.4.2.4.1 Interval Flushing
	3.4.2.4.2 Specifying a delegate compiler

	3.4.3 <clover-report>
	3.4.3.1 Description
	3.4.3.2 Parameters
	3.4.3.3 Nested elements of <clover-report>
	3.4.3.3.1 <current>
	3.4.3.3.1.1 Parameters
	3.4.3.3.1.2 <historical>
	3.4.3.3.1.2.1 Parameters

	3.4.3.3.1.3 Nested elements of<current>
	3.4.3.3.1.3.1 <fileset>
	3.4.3.3.1.3.2 <sourcepath>

	3.4.3.3.1.4 Nested elements of <historical>
	3.4.3.3.1.4.1 <overview>
	3.4.3.3.1.4.2 <coverage>
	3.4.3.3.1.4.2.1 Parameters

	3.4.3.3.1.4.3 <metrics>
	3.4.3.3.1.4.3.1 Parameters

	3.4.3.3.1.4.4 <movers>
	3.4.3.3.1.4.4.1 Parameters

	3.4.3.3.1.5 The <format> Element
	3.4.3.3.1.5.1 Parameters

	3.4.3.4 Examples of Current Report Configurations
	3.4.3.5 Examples of Historical Report Configurations

	3.4.4 <clover-historypoint>
	3.4.4.1 Description
	3.4.4.2 Parameters
	3.4.4.3 Nested elements of<clover-historypoint>
	3.4.4.3.1 <fileset>

	3.4.4.4 Examples

	3.4.5 <clover-check>
	3.4.5.1 Description
	3.4.5.2 Parameters
	3.4.5.3 Nested elements of <clover-check>
	3.4.5.3.1 <package>
	3.4.5.3.1.1 Parameters

	3.4.5.4 Examples

	3.4.6 <clover-log>
	3.4.6.1 Description
	3.4.6.2 Parameters
	3.4.6.3 Nested elements
	3.4.6.3.1 <Package>
	3.4.6.3.1.1 Parameters

	3.4.6.3.2 <Sourcepath>

	3.4.6.4 Examples

	3.4.7 <clover-view>
	3.4.7.1 Description
	3.4.7.2 Parameters
	3.4.7.3 Nested elements
	3.4.7.3.1 <sourcepath>

	3.4.7.4 Examples

	3.4.8 <clover-clean>
	3.4.8.1 Description
	3.4.8.2 Parameters
	3.4.8.3 Examples

	3.4.9 <clover-merge>
	3.4.9.1 Description
	3.4.9.2 Parameters
	3.4.9.3 Nested elements of <clover-merge>
	3.4.9.3.1 <cloverDb>
	3.4.9.3.1.1 Parameters

	3.4.9.3.2 <cloverDbSet>
	3.4.9.3.2.1 Parameters

	3.4.9.4 Examples

	3.5 Sharing Report Formats

	4 IDE Plugin Guides
	4.1 Clover IDE Plugins
	4.1.1 Plugin Guides

	4.2 Eclipse Plugin Guide
	4.2.1 Overview
	4.2.2 Caveats / Known problems
	4.2.3 Installation
	4.2.3.1 1 Locating your Eclipse plugin directory
	4.2.3.2 2 Removing previous versions of the plugin
	4.2.3.3 3 Installing the plugin
	4.2.3.4 4 Installing the license
	4.2.3.5 5 Start Eclipse

	4.2.4 Using the plugin
	4.2.4.1 Setting up a JDK
	4.2.4.2 Activating the Clover Eclipse plugin
	4.2.4.3 The Clover Viewer tool
	4.2.4.4 Viewing Coverage Results
	4.2.4.5 Instrumenting your code
	4.2.4.6 Online help
	4.2.4.7 Deactivating the Clover Eclipse plugin

	4.2.5 Configuration options
	4.2.5.1 Project Properties - Instrumentation Options
	4.2.5.2 Project Properties - Compilation Options
	4.2.5.3 Project Properties - Filter Options
	4.2.5.4 Clover Preferences

	4.2.6 Large Projects
	4.2.6.1 The Clover Working-Set

	4.2.7 Working with custom filters.
	4.2.8 FAQ

	4.3 Clover IDEA 3 Plugin UserGuide
	4.3.1 Overview
	4.3.2 Installing the plugin
	4.3.3 Using the plugin
	4.3.3.1 Enabling the Clover Plugin for your project
	4.3.3.2 Building your Project with Clover
	4.3.3.2.1 Build Options

	4.3.3.3 Viewing Coverage Results

	4.3.4 Configuration Options
	4.3.4.1 Compilation options
	4.3.4.2 Viewer options

	4.4 Clover IDEA 4 Plugin UserGuide
	4.4.1 Overview
	4.4.2 Installing
	4.4.3 Uninstalling
	4.4.4 Configuring your project
	4.4.5 Getting Started
	4.4.6 Viewing Coverage Results
	4.4.7 Configuration Options
	4.4.7.1 Compilation Options
	4.4.7.1.1 Initstring
	4.4.7.1.2 Flush Policy
	4.4.7.1.3 Instrumentation

	4.4.7.2 Viewer options
	4.4.7.2.1 Refresh Policy
	4.4.7.2.2 General
	4.4.7.2.3 Source Highlighting

	4.4.7.3 Filter Options
	4.4.7.3.1 Regexp Filters
	4.4.7.3.2 Block Filters

	4.4.8 Example: Creating a regexp context filter
	4.4.9 FAQ

	4.5 Clover IDEA5/6 Plugin UserGuide
	4.5.1 Overview
	4.5.2 Installing
	4.5.3 Uninstalling
	4.5.4 Configuring your project
	4.5.5 Getting Started
	4.5.6 Viewing Coverage Results
	4.5.7 Configuration Options
	4.5.7.1 Compilation Options
	4.5.7.1.1 Initstring
	4.5.7.1.2 Flush Policy
	4.5.7.1.3 Instrumentation

	4.5.7.2 Viewer options
	4.5.7.2.1 Refresh Policy
	4.5.7.2.2 General
	4.5.7.2.3 Source Highlighting

	4.5.7.3 Filter Options
	4.5.7.3.1 Regexp Filters
	4.5.7.3.2 Block Filters

	4.5.8 Example: Creating a regexp context filter
	4.5.9 FAQ

	4.6 Clover Netbeans Module
	4.6.1 Overview
	4.6.2 Installing the Module
	4.6.3 Configuring the Module
	4.6.4 Using the Module
	4.6.4.1 Build Options

	4.6.5 Viewing Coverage Results
	4.6.5.1 Coverage Browser
	4.6.5.2 Inline source annotation

	4.6.6 Configuration
	4.6.6.1 Clover Instrumentation
	4.6.6.1.1 Initstring
	4.6.6.1.2 Flush Policy

	4.6.6.2 View Settings
	4.6.6.2.1 Auto Refresh
	4.6.6.2.2 Refresh interval
	4.6.6.2.3 Show Summary

	4.6.7 FAQ
	4.6.8 Known Issues

	4.7 JBuilder Plugin Guide
	4.7.1 Overview
	4.7.2 Installing the JBuilder Plugin
	4.7.3 Uninstalling the JBuilder Plugin
	4.7.4 Quick Start Guide
	4.7.5 Working with Clover
	4.7.6 Viewing Coverage Results
	4.7.7 Configuration Options
	4.7.7.1 Compilation Options
	4.7.7.1.1 Initstring
	4.7.7.1.2 Flush Policy
	4.7.7.1.3 Filtering
	4.7.7.1.4 Compiler
	4.7.7.1.5 Language Level

	4.7.7.2 View Options
	4.7.7.2.1 Refresh Policy
	4.7.7.2.2 Inline View
	4.7.7.2.3 Source Highlighting
	4.7.7.2.4 Span

	4.7.7.3 Filter Options
	4.7.7.3.1 Block Filters
	4.7.7.3.2 Regexp Filters

	4.7.8 Example: Creating a regexp context filter
	4.7.9 FAQ

	4.8 Clover JDeveloper 10g Plugin UserGuide
	4.8.1 Overview
	4.8.2 Installing
	4.8.3 Uninstalling
	4.8.4 Configuring your Project
	4.8.5 Getting Started
	4.8.6 Viewing Coverage Results
	4.8.7 Working with Clover
	4.8.8 Compilation Options
	4.8.9 Viewing options
	4.8.10 Filter Options
	4.8.11 Example: Creating a regexp context filter
	4.8.12 Source Highlight Options
	4.8.13 FAQ

	5 Command Line Tools
	5.1 Clover Command Line Tools
	5.1.1 Command line tools:

	5.2 CloverInstr
	5.2.1 Usage
	5.2.2 Params
	5.2.3 Options
	5.2.4 API Usage
	5.2.5 Examples

	5.3 CloverMerge
	5.3.1 Usage
	5.3.2 Params
	5.3.3 Options
	5.3.4 API Usage
	5.3.5 Examples

	5.4 XmlReporter
	5.4.1 Usage
	5.4.2 Params
	5.4.3 Options
	5.4.4 API Usage
	5.4.5 Examples

	5.5 HtmlReporter
	5.5.1 Usage
	5.5.2 Params
	5.5.3 Options
	5.5.4 API Usage
	5.5.5 Examples

	5.6 PDFReporter
	5.6.1 Usage
	5.6.2 Params
	5.6.3 Options
	5.6.4 API Usage
	5.6.5 Examples

	5.7 ConsoleReporter
	5.7.1 Usage
	5.7.2 Params
	5.7.3 Options
	5.7.4 API Usage
	5.7.5 Examples

	5.8 SwingViewer
	5.8.1 Usage
	5.8.2 Params
	5.8.3 Options
	5.8.4 API Usage
	5.8.5 Examples

	6 Advanced Usage
	6.1 Background: The Clover Coverage Database
	6.1.1 Database structure and lifecycle
	6.1.1.1 Registry file
	6.1.1.2 ContextDef file
	6.1.1.3 CoverageRecording Files

	6.1.2 Managing the Clover database

	6.2 Using Clover with Distributed Applications
	6.2.1 Background: the Clover initstring
	6.2.2 Telling Clover how to find it's registry
	6.2.3 Classpath Issues
	6.2.4 Restricted Security Environments
	6.2.4.1 Recommended Permissions

	6.3 Flush Policies
	6.4 Source Directives
	6.4.1 Switching Clover on and off
	6.4.2 Force Clover to flush
	6.4.3 Change instrumentation strategy

	6.5 Contexts
	6.5.1 Block Contexts
	6.5.2 Method Contexts
	6.5.3 Statement Contexts
	6.5.4 Using Context Filters
	6.5.4.1 Filtering catch blocks
	6.5.4.2 Filtering logging statements

	6.6 Using Spans
	6.7 Extracting coverage data programmatically
	6.7.1 Using XPath with Clover's XML reports

	7 Tutorials
	7.1 Using Clover with Ant and JUnit
	7.1.1 Using Clover with Ant and JUnit
	7.1.1.1 Before you start
	7.1.1.2 The tutorial work area

	7.1.2 Part 1 - Measuring coverage with Clover
	7.1.2.1 Introduction
	7.1.2.2 Compiling and running
	7.1.2.2.1 Compiling
	7.1.2.2.2 Running the tests

	7.1.2.3 Adding Clover targets
	7.1.2.3.1 Adding Clover task definitions
	7.1.2.3.2 Adding a target to enable Clover
	7.1.2.3.3 Adding Clover to the build classpath

	7.1.2.4 Testing with Clover
	7.1.2.4.1 Compile with Clover
	7.1.2.4.2 Running the tests

	7.1.2.5 Creating a report
	7.1.2.5.1 Adding a Clover report target
	7.1.2.5.2 Generating the report

	7.1.2.6 Interpreting the report
	7.1.2.7 Improving coverage

	7.1.3 Part 2 - Historical Reporting
	7.1.3.1 Introduction
	7.1.3.2 Creating history points
	7.1.3.2.1 Adding a history point target
	7.1.3.2.2 Recording a history point

	7.1.3.3 Generating historical data
	7.1.3.4 Creating historical reports
	7.1.3.4.1 Add a historical report target
	7.1.3.4.2 Generating a historical report

	7.1.3.5 Interpreting historical reports
	7.1.3.6 Customising historical reports
	7.1.3.6.1 Changing output format
	7.1.3.6.2 Chart Selection
	7.1.3.6.3 Chart Configuration
	7.1.3.6.4 'Movers' Configuration

	7.1.4 Part 3 - Advanced Features
	7.1.4.1 Introduction
	7.1.4.2 Automating coverage checking
	7.1.4.2.1 Adding coverage checking
	7.1.4.2.2 Failing the build if coverage criteria not met
	7.1.4.2.3 Adding Package-level coverage criteria
	7.1.4.2.4 Context filtering

	8 Miscellaneous
	8.1 Swing Viewer
	8.1.1 Overview
	8.1.1.1 Launching the viewer from Ant
	8.1.1.2 Launching the viewer from the Command Line
	8.1.1.3 Package View
	8.1.1.4 Coverage and Metrics
	8.1.1.5 Code View

	8.1.2 Generating Reports

	8.2 Interval Format
	8.3 Frequently Asked Questions
	8.3.1 Questions
	8.3.2 Answers
	8.3.2.1 1. General
	8.3.2.1.1 1.1.
 Can't find an answer here?

	8.3.2.1.2 1.2.
 What is Code Coverage Analysis?

	8.3.2.1.3 1.3.
 What are the limitations of Code Coverage?

	8.3.2.1.4 1.4.
 Where did Clover originally come from?

	8.3.2.1.5 1.5.
 Why the name "Clover"?

	8.3.2.2 2. Technical Background
	8.3.2.2.1 2.1.
 Does Clover depend on JUnit?

	8.3.2.2.2 2.2.
 Does Clover work with JUnit4 and TestNG?

	8.3.2.2.3 2.3.
 Why does Clover use Source Code Instrumentation?

	8.3.2.2.4 2.4.
 Will Clover integrate with my IDE?

	8.3.2.2.5 2.5.
 Does Clover integrate with Maven?

	8.3.2.2.6 2.6.
 What 3rd Party libraries does Clover utilise?

	8.3.2.2.7 2.7.
 How are the Clover coverage percentages calculated?

	8.3.2.2.8 2.8.
 Does Clover support the new language features in JDK1.5?

	8.3.2.3 3. Troubleshooting
	8.3.2.3.1 3.1.
 Two questions to ask yourself first when troubleshooting Clover:

	8.3.2.3.2 3.2.
 When using Clover from Ant, why do I get "Compiler Adapter 'org.apache.tools.ant.taskdefs.CloverCompilerAdapter' can't
 be found." or similar?

	8.3.2.3.3 3.3.
 When using Clover, why do I get a java.lang.NoClassDefFoundError when I run my code?

	8.3.2.3.4 3.4.
 When generating some report types on my unix server with
 no XServer, I get an exception "Can't connect to X11 server" or similar.

	8.3.2.3.5 3.5.
 Why do I get 0% coverage when I run my tests and then a reporter from the same instance of Ant?

	8.3.2.3.6 3.6.
 Why do I get an java.lang.OutOfMemoryError when compiling with Clover turned on?

	8.3.2.3.7 3.7.
 For some statements in my code Clover reports "No Coverage information gathered for this expression".
 What does that mean?

	8.3.2.3.8 3.8.
 Why does Clover instrument classes I have excluded using the <exclude>
 element of the <clover-setup> task?

	8.3.2.3.9 3.9.
 I'm trying to get a coverage report mailed to the team as shown in your example, but I keep getting
 "[mail] Failed to send email". How do I fix this?

