Clover.NET User Manual

Version 2.1.2714

Clover.NET 2.1.2714 User Manual

1. Introduction

1.1. Introduction

Clover.NET is a code coverage tool to help you understand and improve the quality of your
NET software testing. This, in turn, allows you to deliver quality .NET software and updates
with confidence and reduced costs.

1.1.1. Getting Started

To install Clover.NET, please refer to the Installation Guide. This covers installation of the
command-line tools, the Visual Studio.NET 2003 and Visual Studio 2005 plugins, and the
NAnNt tasks

If you are having problems and need support please refer to our Frequently Asked Questions
section covering common questions. It also has links to our support forums and support email
addresses.

1.1.2. System Requirements

Clover.NET works with both version 1.1 and version 2.0 of the Microsoft .NET Framework.
There are plugins for both Visual Studio .NET 2003 and Visual Studio 2005. At this time
Clover.NET only supports the VB.Net and C# programming languages.

All necessary third party libraries are packaged with Clover.NET. The Clover.NET runtime
component has no externa dependencies.
1.1.3. Acknowledgments

Clover.NET makes use of the following excellent 3rd party libraries.

Elkhound A GLR parser generator

NVelocity Templating engine used for HTML report
generation.

Apache Logging Log4Net Logging system

The Clover.NET Visual Studio plugin contains portions Copyright 2004, Microsoft
Corporation. All rights reserved

Page 2

Clover.NET 2.1.2714 User Manual

2. Code Coverage

2.1. Code Coverage

2.1.1. What is Code Cover age?

Code coverage measurement simply determines those statementsin a body of code have been
executed through a test run and those which have not. In general, a code coverage system
collects information about the running program and then combines that with source
information to generate a report on test suite's code coverage.

Code coverage is part of afeedback loop in the development process. As tests are devel oped,
code coverage highlights aspects of the code which may not be adequately tested and which
require additional testing. Thisloop will continue until coverage meets some specified target.

2.1.2. Why Measur e Code Cover age?

It iswell understood that unit testing improves the quality and predictability of your software
releases. Do you know, however, how well your unit tests actually test your code? How
many tests are enough? Do you need more tests? These are the questions code coverage
measurement seeks to answer.

Coverage measurement also helps to avoid test entropy. As your code goes through multiple
release cycles, there can be atendency for unit tests to atrophy. As new code is added, it may
not meet the same testing standards you put in place when the project was first released.
Measuring code coverage can keep your testing up to the standards you require. You can be
confident that when you go into production there will be minimal problems because you
know the code not only passesits tests but that it is well tested.

In summary, we measure code coverage for the following reasons.

« To know how well our tests actually test our code
« To know whether we have enough testing in place
« To maintain the test quality over the lifecycle of a project

Code coverage is not a panacea. Coverage generally follows an 80-20 rule. Increasing
coverage values becomes difficult with new tests delivering less and less incrementaly. If
you follow defensive programming principles where failure conditions are often checked at
many levels in your software, some code can be very difficult to reach with practical levels
of testing. Coverage measurement is not a replacement for good code review and good
programming practices.

Page 3

Clover.NET 2.1.2714 User Manual

In general you should adopt a sensible coverage target and aim for even coverage across all
of the modules that make up your code. Relying on a single overall coverage figure can hide
large gapsin coverage.

2.1.3. How Code Coverage Works

There are many approaches to code coverage measurement. Broadly there are three
approaches, which may be used in combination:

Source Code Instrumentation This approach adds instrumentation statements
to the source code and compiles the code with
the normal compile tool chain to produce an
instrumented assembly.

Intermediate code Instrumentation Here the compiled assemblies are instrumented
by adding new intermediate language
statements to the code and a new instrumented
assembly generated.

Runtime Information collection This approach collects information from the
runtime environment as the code executes to
determine coverage information

As the code under test executes, code coverage systems collect information about which
statements have been executed. This information is then used as the basis of reports. In
addition to these basic mechanisms, coverage approaches vary on what forms of coverage
information they collect. There are many forms of coverage beyond basic statement coverage
including conditional coverage, method entry and path coverage.

Page 4

Clover.NET 2.1.2714 User Manual

3. Installation

3.1. Installation Guide

3.1.1. Clover NET 2.1 Downloads

The Clover.NET 2.1 download is a zipfile containing installers for the different .NET
framework versions, 1.1 and 2.0. Choose the installer appropriate to the version of the
framework you are using. You may install Clover.NET for both framework versions if you
wish.

There is adso a download for Mono systems. This is just a zip of the executables and
assembliesfor CLover.NET. Thereisno installer

3.1.2. NET 1.1 and Visual Studio .NET 2003

Theinstaller for .NET 1.1 isfound in the .net 1.1 directory of the Clover.NET download. The
installer for command line tools and the Visua Studio plugin is now combined. You may
select which components you wish to install.

If you are installing the Visua Studio plugin, you must install a set of interop assemblies
from Microsoft prior to installing Clover.NET. In the .net 1.1 directory, you will find a
second instaler, VSIP Interop Assembly Redist.msi. This is supplied by Microsoft
corporation and provides the necessary managed execution environment for Visual Studio
plugins. Other plugins from other vendors may also install this component. It does not cause
any harm to run the installer again to be sure.

Once installed, the command-line tools are available directly in the instalation directory.
You may want to add this directory to your Path environment variable to make these
commands available

When the command line tools are selected, the install includes the following executables and
assemblies

Cloverinstr The Clover.NET instrumenter

HtmIReporter The HTML Report generator

XmlIReporter The XML Report Generator

CloverRuntime.dll The Clover Runtime library. Your Clovered

builds must add a reference to this assembly

Clover DLLs Various DLLs used by the Instrumenter and

Page 5

Clover.NET 2.1.2714 User Manual

report generators

Please refer to the Licensing section for information on obtaining and installing a
Clover.NET license. All Clover.NET installations require alicense file to operate.

For information on the options and the operation of the command line tools please refer to
the Command Line Tools Guide.

If you choose to install the Visual Studio plugin, please ensure Visual Studio is not currently
running. The installer will register the plugin with Visual Studio automatically so it will be
available the next time you restart Visual Studio.

For information on the operation of the plugin please refer to the Plugin documentation.

3.1.3. .NET 2.0 and Visual Studio 2005

Theinstaler for .NET 2.0isfound in the .net 2.0 directory of the Clover.NET download. The
installer for command line tools and the Visua Studio plugin is combined. You may select
which components you wish to install.

Once installed, the command-line tools are available directly in the instalation directory.
You may want to add this directory to your Path environment variable to make these
commands available

When the command line tools are selected, the install includes the following executables and
assemblies

CloverlInstr The Clover.NET instrumenter

HtmIReporter The HTML Report generator

XmlIReporter The XML Report Generator

CloverRuntime.dll The Clover Runtime library. Your Clovered

builds must add a reference to this assembly

Clover DLLs Various DLLs used by the Instrumenter and
report generators

Please refer to the Licensing section for information on obtaining and installing a
Clover.NET license. All Clover.NET installations require alicense file to operate.

For information on the options and the operation of the command line tools please refer to
the Command Line Tools Guide.

If you choose to install the Visual Studio plugin, please ensure Visua Studio is not currently

Page 6

Clover.NET 2.1.2714 User Manual

running. The installer will register the plugin with Visual Studio automatically so it will be
available the next time you restart Visual Studio.

For information on the operation of the plugin please refer to the Plugin documentation.

3.2. Clover .NET licensing

3.2.1. Clover.NET licensing

All Clover.NET installations require a valid Clover.NET license file to operate. This file is
not included with the standard installers for Clover. It must be obtained from the Clover.NET
website. The license file determines what operations you are licensed to use.

Installing the license file, clovernet.license, is ssmply a matter of placing the file into the
same directory into which you installed Clover.NET.

Page 7

Clover.NET 2.1.2714 User Manual

4. Command Line Tools

4.1. Clover NET Command Line Tools

4.1.1. Command Line Tools

Clover.NET provides a set of command line tools to perform the operations required to
instrument and report on Code Coverage. If your build process uses make, nmake or similar
tools, you can integrate Clover.NET into that build process with the command line tools. The
Clover.NET NAnNt tasks also use the command line tools to perform required Clover.NET
operations.

The following sections describes the operation and supported options for each of the
command line tools

Cloverinstr The Clover.NET instrumenter

CloverSolution Visual Studio Solution Instrumenter
HtmIReporter The HTML Report generator

XmlReporter The XML Report Generator

CloverCheck Coverage Target Checker

CloverRuntime.dll The Clover Runtime library. Your Clovered

builds must have a reference to this assembly.

A typical build process involving the command line tools would be

Instrument the code using Cloverinstr

Compile the code with your existing compiler tool chain

When compiling add a reference to the CloverRuntime.dll assembly
Run your unit tests with your unit test framework such as NUnit
Generate a set of reports using HtmlReporter

You may want to add the Clover.NET install di rectory to the Windows Path environment
variable. The plugin and Clover.NAnt tasks do not require this to operate.

aprwdE

4.1.2. Response Files

All command line tools accept response files. These are indicated by and argument starting
with a'@' character. The options in the response file can be on multiple lines or multiple
options may be on a single line. Where spaces are desired in values, they should be enclosed

Page 8

site:cli/cloversolution

Clover.NET 2.1.2714 User Manual

in double quot () characters. A response file can be combined with command line options.
4.2. Clover .NET Instrumenter

4.2.1. Cloverinstr - The Clover .NET instrumenter

Cloverinstr is the Clover Instrumenter. It takes your source code and adds coverage
instrumentation. The output of Cloverinstr is a new set of source files which need to be
compiled using your preferred compiler tool chain.

To perform its instrumentation, Cloverinstr parses the source code to determine where
instrumentation is required. Cloverinstr will detect syntax errors in the source code, athough
this error reporting is less comprehensive than a compiler. It is recommended, therefore, that
you ensure that your code compiles before attempting to Clover with Cloverinstr.

As Cloverinstr analyzes your code, it builds a coverage database recording information about
the classes, methods and statements that make up your code. This information is combined
with coverage recordings made during test runs to build the various coverage reports.

Once instrumented, you should build the Clovered code using your preferred compiler tool
chain. The resulting assembly will generate coverage recordings when the code is run.
Normally the Clovered code would be run during unit testing but there is no dependency of
the Clovered code on the unit test framework. Coverage recordings can be gathered in other
test scenarios such as functional and user-interface testing.

4.2.2. Usage
Cloverlnstr [options] [response files] [source files]

4.2.3. Options

CloverInstr supports a number of options which control how it instruments your code. These
are detailed below. If you just type Cloverinstr, it will show a summary of al options. Most
options have both along and short format. Use of the long format is recommended for use in
build systems such as make since the system is more readable and maintainable. For
command line usage, the short options may be more convenient

Long Name Short Name Required Description

--initstring -i Yes This option specifies
the location of the
coverage database
maintained by
Cloverinstr. If the

Page 9

--srcdir

--destdir

--flushinterval

No

Yes

No

Clover.NET 2.1.2714 User Manual

database does not
exist, Cloverinstr will
create it. The contining
directory, however,
must already exist.

The --srcdir option
gives Cloverinstr the
location of a source
directory. If you do not
specify a source
directory you must
provide one or more
individual source files
as arguments to
Cloverinstr. You may
provide multiple -s
options to Clover more
than one set of Source
files. Cloverinstr will
instrument all source
files it finds and copy
to the destination
directory

The --destdir option
tells Cloverlnstr where
to place the
instrumented source
code. All files are
placed into the
destination directory
relative to their source
directory or to the
source root, if one is

specified. If any
filename collisions
occur, due to multiple
source directories
being specified,
Cloverlinstr will rename
the instrumented
source file.

Normally Clover.NET
writes out coverage
information when the
containing AppDomain

Page 10

Clover.NET 2.1.2714 User Manual

is unloaded. In most
cases that means that
the coverage recording
is written out when the
application closes. In
some circumstances
you may not want to
shut down the
application being
tested. By selecting a
flush interval (in
milliseconds),
instrumentation will
include additional code
to write out the
coverage recording at
regular intervals.

--recursive -r No By default when you
specify a source
directory with the
--srcdir option,
Cloverlnstr will pick up
the source files in that
directory. You can pick
up all source files in
sub-directories by
using the --recursive
option. Cloverinstr will

then scan all
subdirectories for
Source files.

--srcroot No Normally when picking

up sources from multiple
directories, Cloverinstr
uses the directory
specified with --srcdir as
to root directory. The
fileé'sname relative to that
root directory is used to
create the instrumented
file relative to the
--destdir directory. Files
which are specified
individually are
instrumented to the
destination directory

Page 11

--define

--codepage

--encoding

--noassign

-na

No

No

No

No

Clover.NET 2.1.2714 User Manual

directly.

The --srcroot option
allows you to specify
which directory to use as
the root for computing
the relative filenames.
This is useful where you
wish to specify exactly
which files to instrument
but wish to retain the
source directory structure
in the instrumented code.
It can aso be used to
select a subset of source
directoriesto Clover.

Defines a preprocessor
symbol

Specify the codepage
for the source files.
This is an alternative
method to --encoding
of specifying the
character encoding
used for the source
files. It takes
precedence over the
--encoding option.

Specify the encoding
of source files. By
default, CloverlInstr
uses the system's
default encoding.

Do not instrument
boolean expressions
which contain
assignments.

Ordinarily Clover.NET
instruments all boolean
expressions. In some
conditions that
instrumentation can
affect the compiler's
ability to determine

Page 12

Clover.NET 2.1.2714 User Manual

whether an
uninitialized variable
has been used. With
this option Clover.NET
will not attempt to
instrument such
expressions.

--rootnamespace No When instrumenting
Visual Basic.NET
code, this option
controls the root
namespace, which is
used to enclose all
type definitions in
Visual Basic files. You
should ensure this
option matches the
value you give to the
vbc command line
compiler.

--debug No Turns on debug level
logging. This will give
more information than
verbose level

--verbose -V No Turns on verbose level
logging. This gives
more information about
the progress of the

Instrumenter

--clean -C No Force creation of a
new coverage
database and
re-instrument all
source files.

--keyfile -k No The location of the the

keyfile to use when
signing code. Normally
Clover.NET can locate
the keyfile when it is
specified as a literal in
the code. Where it is
specified through a
constant, you may use

Page 13

Clover.NET 2.1.2714 User Manual

this option to let
Clover.NET know the
location of the key file.

--langversion -lv No This option only
applies to the version
of Clover.NET for .NET
2.0. This option allows
you to specify which
language version of
each .NET language is
used. Use the constant
"iso-1" for .NET 1.1
language and "default"
for .NET 2.0.

4.2.4. Arguments

The arguments to the Cloverlnstr tool are individual files to be Clovered. If you have
specified one or more --srcdir options, the source file arguments are optional.

4.2.5. Examples
Cloverlnstr -i CoverBuild\clover.cdb -s Source -d CoverBuild -r
This example creates, or updates, a coverage database at CloverBuild\clover.cdb. All of the

source files in Source and its subdirectories are Clovered and the result is written out to the
CloverBuild directory.

Cloverlnstr --define DEBUG -i O overBuil d\cl over.cdb -s Source\ Conmon --srcroot Source
This example is similar to the previous one except that only the Common source directory is

Clovered. The use of --srcroot means that the directory structure of the Clovered code in

CloverBuild will be the same as the previous example. This example also sets the DEBUG

preprocessor symbol

4.3. Clover NET Solution I nstrumenter

4.3.1. Clover Solution - Visual Studio solution instrumenter

CloverSolution is the Clover.NET instrumenter for Visual Studio solutions. It works by
creating a Clovered version of your Visual Studio solution. It can also be used to Clover
individual Visual Studio projects.

Any projects which are not Cloverable (i.e. any non C# and non VB projects) are dropped
from the Clovered version of the solution. Once Clovered, you can build the Clovered

Page 14

Clover.NET 2.1.2714 User Manual

version of the solution from the command line using devenv.com. Y ou may optionally have
the outputs from the Clovered version of your solution appear in the approriate location
within you normal solution directory structure.

The coverage database and recordings generated by CloverSolution and the Clovered code
are compatible with all other methods provided by Clover.NET for instrumenting code. This
means that you may, for example, view the code coverage results from a Clovered solution
within your IDE using the Clover.NET Visua Studio plugin.

4.3.2. Usage
Cl over Sol uti on [options]

4.3.3. Options

The CloverSolution control options are detailed below. If you just type CloverSolution, it
will show a summary of all options. Most options have both along and short format. Use of
the long format is recommended for use in build systems such as make since the system is
more readable and maintainable. For command line usage, the short options may be more
convenient

Long Name Short Name Required Description

--initstring -i No This option specifies
the location of the
coverage database
maintained by
CloverSolution. If the
database does not
exist, CloverSolution
will create it. This
parameter is optional If
you do not provide it,
Clover.NET will create
the coverage database
as clover.cdb in the
output directory.

--solution -S No This options specifies
the solution file you
wish to Clover. If you
do not specify a
solution you must
specify at least one
Visual Studio project
file.

Page 15

--project

--destdir

--preserve

--config

Clover.NET 2.1.2714 User Manual

-p No This options specifies
a Visual Studio project
file. You may specify
more than one project
file and may do so in
addition to a solution
file. If CloverSolution
detects that a
dependent project is
not included in the list
of projects which are to
be Clovered, it will give
a warning.

-d No The --destdir option
tells CloverSolution
where to place the
instrumented solution.
The solution directory
structure is retained in
the destination
directory. If this option
is not specified, it
defaults to a directory
CloverBuild.

No This option instructs
CLoverSolution to
generate Clovered
versions of your project
file so that the build
outputs are written to
the same location as
the normal outputs of
the corresponding
project. This means
that the Clovered
output will overwrite
your normal build
output.

No Select the config you
wish to build. Although
solutions support
multiple configs,
CloverSolution needs
to know which config to
use when

Page 16

Clover.NET 2.1.2714 User Manual

instrumenting code so
that the appropriatre
preprocessor defines
are used to determine
which code is to be
Clovered. This defaults
to Debug if not
specified.

--flushinterval -f No Normally Clover.NET
writes out coverage
information when the
containing AppDomain
is unloaded. In most
cases that means that
the coverage recording
is written out when the
application closes. In
some circumstances
you may not want to
shut down the
application being
tested. By selecting a
flush interval (in
milliseconds),
instrumentation will
include additional code
to write out the
coverage recording at
regular intervals.

--noassign -na No Do not instrument
boolean expressions
which contain

assignments.

Ordinarily Clover.NET
instruments all boolean
expressions. In some
conditions that
instrumentation can
affect the compiler's
ability to determine
whether an
uninitialized variable
has been used. With
this option Clover.NET
will not attempt to
instrument such

Page 17

Clover.NET 2.1.2714 User Manual

expressions.

--debug No Turns on debug level
logging. This will give
more information than
verbose level

--verbose -V No Turns on verbose level
logging. This gives
more information about
the progress of the
Instrumenter

--clean -C No Performs a full
re-Clovering of all
source code. Normally
when Clovering a
solution, Clover.NET
will not copy re-Clover
files which have not
changed.

--keyfile -k No The location of the the
keyfile to use when
signing code. Normally
Clover.NET can locate
the keyfile when it is
specified as a literal in
the code. Where it is
specified through a
constant, you may use
this option to let
Clover.NET know the
location of the key file.

--additional -a No Specifies an additional
file or directory to be
copied to the Clovered
solution. In some
instances a solution
may require files which
are not listed in the
solution projects.
These files need to be
specified manually.
CloverSolution will
determine where these
files occur relative to

Page 18

Clover.NET 2.1.2714 User Manual

--exclude

--include

No

No

the current solution
and copy them to the
corresponding location
in the Clovered
solution.

Exclude a file or
directory from
Clovering. When a
source file is excluded
from Clovering, a copy
will still be made in the
Clovered solution area.
This copy will not have
any instrumentation
and will not appear in
any Clover.NET
reports. This option is
useful where, for
example, you solution
contains a Test project
and you do not want to
see tests in your
coverage results.

The include option
specifies a directory or
file which is to be
Clovered when
generating the
Clovered solution. If
you do not specify any
includes, all eligible
files are Clovered. If
you specify any
includes, only files
listed in the include
specifications will be
Clovered. Other elgible
files will be copied
across but will not be
instrumented. Some
fles may still be
modified to update
items such as key file
references, etc. When
a directory is specified,
all files under that

Page 19

--webmap

--findroot

No

No

Clover.NET 2.1.2714 User Manual

diretcory are included.

Map an ASP project
URL to a local file. You
may specify multiple
mappings with
separate --webmap
options. The syntax for
this options is url=file.
The url can be a prefix
of the URL actually
used in the solution
file. In this case the
filename of the project
is formed by the given
file and the remainder
of the project URL.
This allows you to map
the URL to a local
folder if there are
multiple webapps in
the solution.

Normally Clover.NET
maps the solution file
into the destdir
directory, which
defaults to CloverBuild.
When a solution
contains projects
above the solution
directory, Clover.NET
remaps these solutions
to the destdir to avoid

writing anything
outside the destdir
location. If your

solution depends on
the directory structure,
you can specify this
option. Clover.NET will
then attempt to
determine the "solution
space" and map the
root of that space into
the destdir. This
means that the
Clovered solution file

Page 20

Clover.NET 2.1.2714 User Manual

may be mapped to a
directory further down
in the destdir directory
hierarchy.

4.3.4. Examples

Cl overSolution -s Test.sln

This example creates, or updates, a coverage database at CloverBuild\clover.cdb. All of the
source files in the Test solution's projects are Clovered and the result is written out to the
CloverBuild directory.

Cl overSolution -p src\C over\C over.csproj -p src\Tests\Tests.csproj --exclude src\Test

This example Clovers the Test and Clover projects and excludes the Test code from
instrumentation.

4.4. Clover NET XML Report Generator

4.4.1. XMLReporter - The Clover NET XML Report Generator

The XML Report generator, XmlReporter, combines all of the coverage recordings generated
by the Clovered code during execution, the coverage database created by instrumentation and
the source files to generate an XML report on the coverage results.

4.4.2. Usage

XM_Reporter [options]

4.4.3. Options

Long Name Short Name Required Description

--initstring -i Yes This option specifies
the location of the
coverage database
generated during
instrumentation. This is
used to load the
coverage database
and any associated
coverage recordings.

--output -0 Yes The name of the XML
file which will contain
the report

Page 21

--title -t Yes
--lineinfo -l No
--verbose -v No
--debug No
4.4.4. Examples
XM.Reporter -i C overBuild\clover.cdb -0 report
This example generates areport in report.xml, titles Test.
XM_Reporter -i CloverBuild\clover.cdb -0 report

Clover.NET 2.1.2714 User Manual

The report title.

Include information
about each coverage
counter for each file in
the report.

Turns on verbose level
logging. This gives
more information about
the progress of the
report generation

Turns on debug level
logging. This will give
more information than
verbose level

This example produces a more comprehensive report by including information about each

coverage counter in the report.

45. Clover NET HTML Report Generator

4.5.1. HtmIReporter - The Clover . NET HTML Report Generator

The HTML Report generator, HtmlReporter, combines all of the coverage recordings
generated by the Clovered code during execution, the coverage database created by
instrumentation and the source files to generate a comprehensive HTML report showing the

coverage metrics and covered source.

4.5.2. Usage
Ht M Reporter [options]

4.5.3. Options
Long Name Short Name

--initstring -i Yes

Description

This option specifies
the location of the

Page 22

Clover.NET 2.1.2714 User Manual

coverage database
generated during
instrumentation. This is
used to load the
coverage database
and any associated
coverage recordings.

--outputdir -0 Yes The location where the
HTML report should be
written. This area will
contain all of the
generated HTML files.

--title -t Yes The Report title. This
will appear in the
browser window's title
bar and in the
coverage information
header at the top of
each generated page.
If it contains spaces it
should be quoted.

--bw No The bw option (Black
and White) removes
colour syntax
highlighting from the
generated reports. This
reduces the size of the

HTML files.
--showempty -e No This option causes the
HTMLReporter to

include classes which
have no content (no
methods, etc) to be
included in the report.

--nocache -n No This option directs the
reporter to include
HTML meta directives
to prevent caching of
the reports by HTML
browsers.

--hidesrc -h No This option eliminates
the rendering of source
and just provides the

Page 23

Clover.NET 2.1.2714 User Manual

overall, namespace,
and class summary
pages.

--hidebars -b No This option prevents
the rendering of the
red-green coverage
bar graphs

--tabwidth -tw No This option controls the
rendering of tabs
characters in the
source. All tabs are
converted to spaces in
the generated HTML.
When a tab character
is encountered it is
replaced by spaces up
to the next tab stop.
This option controls
where those tab stops
occur. The default
rendering is a tab stop
every 4 characters.

--orderby -C No Control the ordering of
elements in the generated
reports. The following
values are supported

» alpha- Sort classes
and namespaces by
name

e asc- Sort by
ascending coverage
values

e desc- Sort by
descending coverage
values

--verbose -V No Turns on verbose level
logging. This gives
more information about
the progress of the
report generation

--debug No Turns on debug level
logging. This will give
more information than

Page 24

Clover.NET 2.1.2714 User Manual

verbose level

4.5.4. Examples

Ht M Reporter -i CloverBuild\clover.cdb -o report -t Test

This example generates a report into the report directory, titled Test. The report will include
all source, with color syntax highlighting and coverage bar graphs

Ht M Reporter -i CloverBuild\clover.cdb -0 report -t Test -h -b

This example produces a more compact report by eliminating source code and coverage bars.

4.6. Clover NET Coverage Checker

4.6.1. Clover Check

CloverCheck allows you to quickly access coverage values from your coverage recording.

4.6.2. Usage
Cl over Check [options] [response_fil es]

4.6.3. Options
Long Name Short Name Required Description

--initstring -i Yes This option specifies
the location of the
coverage database
generated during
instrumentation. This is
used to load the
coverage database
and any associated
coverage recordings.

--overall -0 No Displays the overall
coverage of the
coverage recordings.

--namespace -n No Allows you to specify
the names of particular
namespaces whose
coverage is to be
displayed.

--class -C No Allows you to specify
the names of particular

Page 25

Clover.NET 2.1.2714 User Manual

class whose coverage
is to be displayed.

--all -a No Display all coverage
values including
overall, all
namespaces and all
classes.

4.6.4. Examples
Cl over Check -i C overBuild\clover.cdb -0

This example prints the overall coverage values. The output would be like this:

Loaded dat abase at ' d overBuil d\cl over. cdb’
Processi ng 70 coverage recordi ngs

Coverage Results

Overal | : Total :19. 7% Met hod: 21. 7% St at enment : 18% Condi ti onal : 25%

4.7. Clover NET Runtime Assembly

4.7.1. Clover Runtime - The Clover NET Runtime Assembly

The Clover Runtime assembly provides the necessary support functions for instrumented
code. To compile and run the instrumented code, the CloverRuntime.dll assembly must be
added as a reference to the compilation process. The NAnt tasks and the Visual Studio plugin
take care of this process automatically. for command line driven builds, such as when using
make, you need to adjust your build process to include the runtime as a reference. The
CloverRuntime assembly is available in the Clover.NET installation directory.

Page 26

Clover.NET 2.1.2714 User Manual

5. Visual Studio Plugin

5.1. Clover .NET Visual Studio Plugin

5.1.1. Visual Studio Plugin

The Clover.NET Visual Studio plugin provides code coverage facilities for Visua
Studio.NET 2003 and Visual Studio 2005 users. There are different versions for the different
IDE versions but both are available in the Clover. NET download and both may beinstalled at
the same time. These facilities are available within the Visual Studio environment and consist
of the following:

1. A Clover options tool window to control the Clovering process

2. A Coverage Viewer which gives atree view of the solution’'s namespaces of the coverage

3. A set of coverage markers which display coverage within the main Visual Studio editor
display

The two tool windows are standard Visual Studio tool windows and can be docked in the

normal way. Please refer to the following sections for more information

Clovering with the Plugin

Options Tool Window

Coverage View Tool Window

Coverage Display in Visual Studio Editor
Report Generation

How the Plugin Operates

5.2. Clovering with the Plugin

5.2.1. Clovering with the plugin

This section describes how you can use the Clover.NET Visua Studio plugin to Clover your
projects. In this section we will walk through the steps necessary to Clover a small
multi-project solution.

1. Thefirst step you should take to Clover your solution is to ensure your solution builds
normally. In this solution walkthough, there are 5 projects as shown:

Page 27

Clover.NET 2.1.2714 User Manual

Solution Explorer]
!a Solution 'TCFP' (5 projects)

f- (=4 Compiler

~ [CanorIcrP

- Elisimulator!

- E?J Lkl

[E?J WorldRunner

Example Solution

2. Once the solution builds, the Clover options should be setup for Clovering. Select the
Clover Options Tool Window from the Clover menu as shown:

Page 28

Clover.NET 2.1.2714 User Manual

uild Debug | Tools | Windmw Help

2 H"igi Debug Processes,., Chrl4-alk+P = | 4 Srclevel

= 85 Connect to Device. .

"':1;- Connect ko Database, .,

| Chonselnsty br.cs | AcquireMarkerLockInstruction, cs
Clover 3 m@ Cptions T
f V)2 AddiRemove Toolboy Tkems. .. Clover Solution i
fdd-in Manager. .. Enable Coverage Displaw
id Set|in Build Comrment Web Pages... B Clean Coverage
Macros b qu;i':' Load Coverage
o= ox; '
= fAckives Conkrol Test Conkainer
Create GUID

Dotfuscator Community Edition

3 Adjacern
Error Lookup

= new Pd ATL/MFC Trace Taool
entcell (g OLEJCOM Object Viewer
n pr
Pyt
External Toals. ..
icd Ad]
. I35 Zuskomize. .,
ho(d) 2pkions, .,

a8 Dir . .ELST:

Clover Menu

An example Options window is shown below. Please refer to the section on the Options
Tool Window for detailed information on the components of the Clover options window.

Page 29

Clover.NET 2.1.2714 User Manual

Clover Options |
2 3 B @

=]

B Display

Coverage Dizplay Enabled Falze
B Instrumentation

Additional Files L

Build Config Debug

Build Location O hdeveloprmenttprojectzh CFPYools s CloverB uild

Clover Databaze D hdevelopmenttprojectsh CFPYools s CloverB uildhclover. cdb
E scluded Solution Projects

Fluzh Interval 10000

Flushing Falze

[nztrument &zzignments Falze

Additional Files
Additiohal files to include when instrumenting a zolution

Clover Options Window

3. Inthiswal kthrough, two of the projects will not be tested and so these will be excluded
from Clovering. Bring up the Excluded Projects Dialog by clicking on the Property in the
Options tool window.

Page 30

Clover.NET 2.1.2714 User Manual

Excluded Solution Projects
] Conar CFP
[Simulator

] Utils
‘whorldR unner

Cancel] I

Example Exclude

The Compiler and WorldRunner projects are excluded in this walkthrough. The default
values are used for the remaining option settings.

It is now time to Clover the project. Click on the build button to start the Clovering
process. Clover.NET creates a copy of al of the solution projects in the CloverBuild area,
Clovering the sources files of those which are not specifically excluded.

Clover.NET creates and uses a Clover specific pane in the Visual Studio output window
where it writes information about the progress of the build. The output window at the
start of Clovering is shown:

IEIu\rer j
Clovering ... s

Clovering d:hdevelopmentiprojectsiicipitools\uktilsuatils. cspraj
Building Clowvered project D:\develnpment\projects\IEFP\tools\CloverBuild\Utils\Clnvered—t-

Microsoft (B) Development Environment VWersion 7.10.3077.
Copyright (C) Microsoft Corp 1384-2Z001. A11 rights reserwed.
—————— BEuild started: Project: Clovered-Tcils, Confiaration: Debuy .NET -—-----

Preparing resources. . .
Updating references. . .
Performing main compilation. ..

<| | A5
Output Window

Page 31

Clover.NET 2.1.2714 User Manual

The Clover.NET plugin launches an independent, non-interactive instance of Visual
Studio to build the Clovered project. Most of the output will be the familiar Visual Studio
build output. At the end of the build process, Clover.NET will report a summary of the
Clovering process

Clover: 5 projects, 5 Covered, 5 built, 0 failed

Clovering is done in the background and Visual Studio can be used as normally in the
foreground. If you wish to stop a Clover build, use the Stop Clover Button on the toolbar.
This button only becomes active during a Clover build.

- At this point the project has been Clovered and it is now ready to be tested. The unit test
for this project isrun external to Visual Studio using the components built under the
CloverBuild directory

- Once the tests have been run, Coverage can be displayed. Open the Coverage View tool
window from the Visual Studio View menu as shown:

Page 32

Clover.NET 2.1.2714 User Manual

Wiew | Project Build Debug Tools Window Help

=| Code - - b Debug - E
L]
' A% b |EE|Z2
Cpen With. .. _ _
3 | izoModelnstruction.cs | Instruction.cs | A
‘g Solution Explarer Chrl+Alk+L j I Y
FF Class View Crl+Shift+C
Ze| Server Explorer Chrl+alt+5
' Resource Yiew Ckr|+Shift+E
= i : int ¥)
Properties Window F4
=4 Obiect Browser Chrl+-Alk+]
2% Toolbax Chrl+Alt+3
#2 Pending Checkins
Web Browser P L(Dir d)
Cther Windows b || 9 Macro Explorer AlE+FS
Shaw Tasks 3 Cocurent Cutline Chrl+ale+T
Toalbars v |Zm Coverage View
IEll Full Screen Shift+alk+Enter G Work Queus
@ Mawigate Backward k|- 7| Task List Ch Al
H] Command Window Chrl+-Alk+-4
=) Bl cutput Chrl-Alt+0
View Menu

7. The Coverage View tool Window provides atree view of the project namespace. Initialy
the coverage tree will show no coverage since no coverage information has been loaded.
Y ou may load the latest coverage information using the Load Button. If you perform

Page 33

Clover.NET 2.1.2714 User Manual

subsequent test runs, you can load the additional coverage recordings by using this
button.

An example is shown below:

Page 34

Clover.NET 2.1.2714 User Manual

A
Eaax 30 @
-5 -

=4} ConorICFR
{3} CLIf0.00 %)
-3 Compiler (0,00 %)
&L} GUI (86,69 %)

=-{} simulator (73,85 %) o

M- ANk (83,33 %)

=¥ Cell (49.63 %)

..... =l ~Celll) (0,00 %)

B AREC100.00 %)

----- =& AnyMarkerSetiboal[T) (76,47 <)

----- =g Cell{char) (100,00 %)

----- =g Clearant() (100,00 %)

----- = Drop(ink) (100,00 %)

----- = DurnplStreamnWriter) (0,00 %)

- mld Hacank 100 N o ll
— Owerall Metrics
Lines: 4720 Classes: Elal
MC Lines: 4G50 Files: 40
Methods: 248

Coverage
Methods: <718 % e ———

Statements: B3.53 % D —
Conditionals: dd. 7d % D —

Total: S3.62 % D

Coverage Tree

Please refer to the section on the Coverage View Tool Window for detailed information

Page 35

Clover.NET 2.1.2714 User Manual

on this tool window.

The other way to view coverage information is to highlight code in the Visual Studio
editor according to its coverage. To do this, select the Display button on the toolbar. The
coverage information will then be displayed in the editor as shown:

19N LS | A NOUSELNS0PUCLar, L | EliMiode Ll Nsirdelon, s Ns0rdelion, o Acgquireiiarssr LOCELNSLrdeLion, os | L

}I; ConorTCFP . Simulator, Cell j I =@ MarkerString{Calour)

numFoodParticles——;

public woid Drop(int num)

i
numwFoodParticles += nwns

public hool IsRocky
i
get
{
return isFocky:

public string Marker3tring(Colour o)

i
bool[] markers = ¢ == Colour.RED ? redMarkers : hlac
GtringBuilder builder = new StringBuilder():;
for (int i = 0; i < 6; ++1i)

i
¢ (markers(i]

{ expression evaluated to krue O times, False 636 times,

E

H
return builder.ToStringl) !

Editor Display

Where code elements are not covered, they will be highlighted. The Visual Studio editor's
gutter will also contains a marker where coverage has been recorded. Thiswill be present

Page 36

Clover.NET 2.1.2714 User Manual

even when the element is covered by testing. Please refer to the section on the Coverage
Editor display for more information on this

9. |f your Clover.NET license supports the generation of HTML reports you may configure
and generate HTML reports directly in the Visual Studio IDE. Y ou may use the Report
Options button to configure your reports as shown:

Clover Report Options = |
2 3 B @
52 &)
2 Format
Irclude Source in Repart True
Report Output Location CloverReport
Show Coverage Graphs True
E Source
Iriclude Empty Source Files True ;I
Stop HTML Caching Falze
Syntax Highlight Source True
Tab Size 4
= Title
Title Cowverage
Title Anchor
Title T arget
Include Empty Source Files
Include zource files with no code content

Report Options

The HTML Report button can then be used to generate the report. The report generation
occurs in the background. Once the report has been generated, you may ctrl-click on the
URL in the output window to view the HTML reportsin the IDE.

Page 37

Clover.NET 2.1.2714 User Manual

Please refer to the section on the Report Generation for detailed information.

10. Y our solution has now been Clovered. Y ou should now have some idea of the quality of
your testing and what you can do to improve your testing efforts.

5.3. Clover .NET toolbar

5.3.1. Clover .NET toolbar

Both the Clover.NET Options and Coverage View tool windows provide a toolbar with
buttons for common Clover.NET functions. These buttons also correspond to operations on
the Clover.NET menu. The toolbar is shown below:

= BB @

Clover.NET toolbar

5.3.2. Toolbar Functions

This button controls display of Coverage

Information within the Visual Studio editor.
Clicking this toggles coverage info display on
and off in all editor tabs.

Display Enable

This button starts a Clover build. A Clover build
CIovBuiId involves Instrumenting the source code and then
building the code externally. While a build is in

progress, this button will be disabled.

This button is normally disabled and becomes
=3 enabled when a Clover Build is in progress. It is
used to stop the Clover build. It may take some
time for the build to actually stop if it is currently
waiting for an external build process to complete

Stop Clover

E;L-, This button will reload coverage information.

You should use this to load your initial set of
coverage recordings and whenever you
generate any new recordings by, for example,
running additional tests.

Load Coverage

E This button removes the Coverage database

and all coverage recordings. It ensures that all
source will be reinstrumented at the next Clover
build.

Clean

Page 38

Clover.NET 2.1.2714 User Manual

Ef Generates an HTML report. This button will only
G -] R be visible if your Clover.NET license includes
enerate Report HTML report generation.

@ Brings up the Report Options tool window

allowing you to configure how HTML coverage
reports are to be rendered. This button will only
be visible if your Clover.NET license includes
HTML report generation.

Generate Report

5.4. Options Tool Window

5.4.1. Clover Options Tool Window

The Clover Options tool window is activated by selecting the Options entry from the Clover
menul.

The Clover.NET plugin only loads when required, so you may notice that initially all menu
items except for the Options item are disabled. This is normal. Once the Options item is
selected, Visua Studio will load the Clover.NET plugin and the remaining items will become
enabled as appropriate. The layout of the Clover.NET options tool window is shown below

Page 39

Clover.NET 2.1.2714 User Manual

Clover Options

BN REEN

: 3| B

o

B Display
Cowerage Dizplay Enabled
B Instrumentabon
Additional Files
Build Config
Build Location
Clowver Databaze
Excluded Solution Projects
Fluzh Interval
Fluzhing
[ngtrument Azsignments

Falze

Debug
D hdevelopmentsprojectzh CFPS tools CloverB uild

O:hdevelopmenthprojectzh CFPYhoolsh CloverB uildhclover. cdb

10000
Falze
Falze

-

Additional Files

Additional filez to include when instrumenting a zolution

Clover Options Window

The options tool window consists of a Clover.NET toolbar with buttons for most common
Clover.NET functions and a properties window to control the operation of Clover.NET. The
toolbar also appears on the Coverage View tool window and corresponds with the items on
the Clover menu. The following table details the function of each of the Clover options

properties.
Property
Coverage Display Enabled

Additional Files

Function

This option controls the display of coverage
information in the Visual Studio editor. It
corresponds to the Display button on the toolbar.
When this property is set to True and there is
coverage information loaded, Clover.NET will
display the current coverage information within
the Visual Studio Editor. Refer to the Coverage
Display section for more details.

Clover.NET determines the files it must

Page 40

Clover.NET 2.1.2714 User Manual

Build Config

Build Location

Clover Database

Excluded Solution Projects

instrument and copy by using the project
information maintained by Visual Studio. If a file
is required which is not included in the project
hierarchy, you must add it explicitly using this
option. You can type the file names in directly or
use the associated dialog to select and add files
or folders interactively. All files are added
relative to the Solution file. Clover.NET will not
handle key file references for assembly signing
automatically. The key files do not need to be
added explicitly.

This is the build configuration that Clover.NET
will use when building the Clovered projects.
This defaults to the DEBUG configuration. This
setting will affect which preprocessor definitions
are used when instrumenting the source.

This option controls where Clover.NET will
create the Clovered versions of the projects
within your solution. By default this is set to the
directory CloverBuild relative to the Solution file.
When Clover.NET has finished Clovering and
building your projects, you will find the output
assemblies here. These are the assemblies you
need to use in testing to generate coverage
recordings.

This determines the location of Clover.NET's
coverage database. The default is to create the
database at CloverBuild\clover.cdb relative to
the solution. This approach keeps all
Clover.NET related files in one area. You may,
however change this to any location you like. In
particular you can select an existing database if
you wish to aggregate coverage recording
across a number of solutions.

In many solutions you may not want to Clover all
projects. For example, you may have your unit
tests as a separate project within the solution
and not want coverage information on the tests
themselves. The option provides a dialog where
you can select which projects to exclude from
Clovering. Excluded projects are still copied to
the CloverBuild area but are not instrumented.
The excluded projects are also built to satisfy
inter-project dependencies, etc. If you are

Page 41

Flush Interval and Flushing

Instrument Assignments

Clover.NET 2.1.2714 User Manual

testing and the test project is excluded from
Clovering, you should use the version built in the
CloverBuild area as it will run with its Clovered
dependencies.

These two properties control the insertion of
flushing code into the instrumented code
generated by the plugin. Normally coverage
information is written out when the AppDomain
is unloaded. This usually occurs when the
application closes. Flushing is used to write out
coverage information without needing to have
the application close.

Instrument boolean expressions which contain
assignments. In some conditions the
instrumentation of boolean expressions can
affect the compiler's ability to determine whether
an uninitialized variable has been used. With
this set to false, Clover.NET will not attempt to
instrument such expressions.

5.5. Coverage Tree View Tool Window

5.5.1. Clover .NET Coverage Tree View

The Coverage Tree View is activated from the View -> Other Windows menu in Visual
Studio. An example of the tool window is shown below:

Page 42

Clover.NET 2.1.2714 User Manual

A
BN s
=-{} ConorlCFP

L} CLI (0,00 %)

#-{ ¥ Compiler {0.00 %)

-} GUI (36,69 %)
=-{} simulator (73,85 %) b
B ANk (83,33 %)
-9 Cell (49,63 %)
ez raCell0) 0,00 %50
B AREC100.00 %)
=g AnyMarkerSet{bool[1) (76,47 %)
=i Celllchar) (100,00 %)
ozl ClearAnkd (100,00 %)
=8 Droplint) (100,00 %)
=8 DurnplStreanmWriter) (0,00 %)

il Hacank 100 0 o ll
— Owerall Metrics
Lines: 4720 Classes: 36
MC Lines: 4650 Files: 40
Methods: 248

CCoverage
Methods: 4715 % D

Statements: B3.55 % D —
Conditionals: 44 7d % D ——

Total, S3.62 % D

Coverage Tree

There are three components to the tool window. At the top is the standard Clover toolbar to

Page 43

Clover.NET 2.1.2714 User Manual

control Clover.NET operations. This toolbar also appears on the Options tool window and
corresponds with the operations in the Clover menu.

The main component of the Coverage View window is the Coverage Tree. This is a
namespace tree of your .NET Clovered code. It is similar to the Visual Studio Class View.
Each node of the namespace that contains code shows the coverage figure for classes at that
node of the namespace hierarchy. It does not include coverage for nodes lower in the
hierarchy.

Below the coverage tree is a metrics pane which displays metrics and Coverage information.
As you select a node in the coverage tree, this panel will update to show that node's metrics.
The metrics pane can show metrics and coverage at the overall, namespace, class and file
levels. Not all fields arerelevant at all levels.

In the coverage tree, at the method level, the icons displayed for methods are color coded. A
green icon means that all statements in the method have been executed, red indicates that the
method was not entered and amber means that some of the statements in the method were not
executed. You can double click on the class and method nodes in the tree and Clover.NET
will bring up the source code for that item in the editor. This makes it easy to navigate
around your code from a Coverage point of view and find areas which need attention in your
testing strategy.

5.6. Coverage Display

5.6.1. Coverage Display

Clover.NET is able to display Coverage information directly in the Visual Studio Editor
using text markers. You may be familiar with text markers when using breakpoints in the
debugger. Clover.NET has four different types of markers:

Method coverage marker Indicates that a Method has not been entered

Conditional coverage marker Indicates that a conditional expression has not
taken on both true and false values.

Statement coverage marker Indicates that a statement has not been
executed

Covered marker Indicates that the code has been covered

An example of some of the markersin use is shown below:

Page 44

Clover.NET 2.1.2714 User Manual

13 LS | NO0SENSIEUCion, L5 | BliModelnsrdolion, o | nsrdetion, Oz | soguireiiarser LOCkLns0rdcion. os | L

iglin:uncurII:ZFF'.Siml_llalcn:ur.l:]all j I-:-:‘MarkerString{CDIDur o

numFoodParticles——:

= public woid Drop(int num)

i
numFoodParticles 4= muam;

= public bool IsBocky
i
= get
1
I return isRocky:
B ¥
h
= public string Marker3tring(Colour o)
1
bool[] markers = o == Colour.RED ? redMarkers : blac

StringBuilder builder = new StringBuilder():
for (int 1 = 0; 1 < &; +4+1)

i
e RS

{ expression evaluated to true O times, False 636 times,

E

h
return builder.To3tring() ;

Editor markers

All markers display tooltips to give more information about the reason why the coverage is
not shown. This is especialy useful for understanding why coverage of a conditional
expression is highlighted. When you hover over the conditional, you will be able to see
whether the expression has never evaluated to true, false, or neither value. In the above
example we can see that the markers array never contained a true value.

Page 45

Clover.NET 2.1.2714 User Manual

Visua Studio renders the tooltips at the end of the marker area so in some cases the tooltip
may not be visible. For methods, you may collapse the method display to more easily view
the tooltip.

Since markers may overlap, Clover.NET will not create markers which are unnecessary.
When a method has not been entered, for instance, the statement and conditional markers for
the method's code will not be displayed since that information would be redundant. When a
method has been entered but contains statements that have not executed, the Covered marker
is used for the method, with the statement marker having a higher priority and rendering for
the appropriate statements. You can see this in the gutter of the example above where the
conditional and statement markers override the method's Covered marker

The "covered" marker will indicate how many times a statement or method has been
executed or entered. This number is aggregated from all coverage recordings from the current
version of the code on display. This information can be handy in some cases to confirm that
tests are executing as you expect but you must be careful to interpret this correctly when
there are multiple coverage recordings relevant to the current code.

The covered marker only renders in the guitter, it does not affect the normal display of text in
the editor window, although such code will display atool tip.

Since Visua Studio uses markers for other purposes, such as breakpointsit is possible to turn
coverage display on and off quickly with the Display button on the toolbar.

By default the coverage markers use a standard Visual Studio red color as the background to
source elements which have not been covered. This can be rather garish but can be
customized by Visual Studio just like any other marker. To do this, select the Options item
from the Tools menu. In the dialog, select the "Fonts and Colors' entry from the
Environment folder. The Clover related markers al appear as entries prefixed by "Clover "
as shown in thisimage:

Page 46

Clover.NET 2.1.2714 User Manual

[£3 Debugging
(£ Device Toals
[HTML Designer

4

x|
23 Enviranmertt s Show settings Fors
General IText Editor j Ilze Defaults |
Docurnents
Drynamic Help Faont (bald tyvpe indicates fixed-width Fanks): Size:
g Fonts and Colors I Courier MNew =l I 10 2
Help
International Settings Display ikems: Item Foreground:
Keyboard I. Automatic j Cuskom. .. |
Frojects and Solution: Clover: Conditional not covered
Task List Clower: Element Covered Item background:
\osb B Clover: Method not covered
el el s Clover: Statement not cowvered I. Red j Custom. .. |
([Source Contral rllancihle Tewt _ILI
(23 Test Editor | | » I~ Bold
([Database Tadls [t353

Marker Colors

Y ou can choose any colors you like for the markers, either standard Visual Studio colors or a
custom color. You can select different colors for each marker if you prefer. These colors do
not affect the colors used in gutter coverage icons. Although its color can be customized, the
covered marker will not display colored text. The following shows the display of all markers

customized to different colors.

Page 47

Clover.NET 2.1.2714 User Manual

é public string Marker3tring(Colour o)
i
bool[] markers = ¢ == Colour.RED ? redMarkers : blackMarkers;
StringBuilder builder = new 3tringBuilderi():
for (int 1 = 0; 1 < 6&; ++1)
{
if (markers[i])
{
builder.Appendii) ;
H
¥
return builder.ToStringl()
i

= public wvoid Dump (3treamllriter writer)
i

if [(isRockv)

{

RS R 1 E R I 1 S .)

Customized colors
5.7. Report Generation with the Plugin

5.7.1. Report Generation with the plugin

If your Clover.NET license supports HTML report generation, the plugin provides options to
configure and generate reports within the IDE.

Y ou may use the Report Options button to configure your reports as shown:

Page 48

Clover.NET 2.1.2714 User Manual

x|
& 3 5 @
3= 84
[E Format
Include Source in Report True
Feport Output Location CloverR eport
Show Coverage Graphs True
B Source
Include Empty Source Files True ;I
Stop HTML Caching Falze
Syntax Highlight Source True
Tab Size 4
= Title
Title Coverage
Title Anchor
Title Target
Include Empty Source Files
Inzlude source files with no code content

Report Options

The report options tool window consists of a property grid with the properties you can use to
configure your HTML reports.

Property Function

Include Source in Report When true, coverage information, such as
coverage counts and indications of uncovered
elements, is rendered for each source file. If
false, only the summary pages showing the
coverage values at the project and namespace
levels are generated.

Page 49

Report Output Location

Show Coverage Graphs

Include Empty Source Files

Stop HTML Caching

Syntax Highlight Source

Tab Size

Title

Title Anchor

Title Target

Clover.NET 2.1.2714 User Manual

This is the location where the report will be
rendered. If a relative name is given, the report
location will be relative to the Visual Studio
solution file.

When true, this option generates the green/red
color bar indicating the relative coverage for
project elements (project, namespaces, files,
classes). If this is false, only the numeric
coverage values are included in the report.

This option controls whether files with no code
content are included in the report. Such files
may consist of non-code elements such as
comments and whitespace.

When true, this option included directives in the
generated HTML to prevent the HTML data
being cached in the browser. This would be
used where you are publishing the reports many
times in the course of a browser session.

When true, code elements, such as keywords,
string literals, etc. are highlighted in different
colors. This increases the size of the generated
HTML. To generate a smaller HTML report, set
this option to False.

This option controls the rendering of tabs
characters in the source. All tabs are converted
to spaces in the generated HTML. When a tab
character is encountered it is replaced by
spaces up to the next tab stop. This option
controls where those tab stops occur. The
default rendering is a tab stop every 4
characters.

The Report title. This will appear in the browser
window's title bar and in the coverage
information header at the top of each generated
page. If it contains spaces it should be quoted.

The Report title may be rendered as a hyperlink.
This option gives the href of that hyperlink.

Since the HTML reports are part of a frameset,
this option allows you to specify a target for the
titte hyperlink. By default the special _top target
is used to open the link in a new window.

Page 50

Clover.NET 2.1.2714 User Manual

Once you have configured the report, you can generate the report using the HTML Report
button on the toolbar. The report is generated in the background and you may perform other
Visua Studio operations while the report is being generated. The Clover.NET pane of the
output window displays the progress of the report generation. When the report is completed,
the URL of the report is displayed. This can be control-clicked to view the report directly in
the IDE's browser window as shown:

5.8. How the Plugin Operates

5.8.1. How the Plugin Oper ates

This section describes how the Clover.NET plugin for Visua Studio works. The main
objective of the plugin is to build a Clovered version of your solution's projects using their
current settings without impacting on the current settings or operation of the Solution.

When Clovering a solution, the Clover.NET plugin performs the following steps:

1. Thefirst step taken by the plugin in Clovering a solution isto create a copy of each
solution project. As these are created, they are renamed to have a"Clover-" prefix. Thisis
to distinguish these project files from the original project files.

2. Asthe plugin does not use a solution file, it builds each project inisolation. To do that it
needs to adjust each project's assembly references. In addition to adding a reference to the
Clover runtime assembly, the plugin will adjust any inter-project references to direct
references to the other project's output assembly.

3. The projects which have not been explicitly excluded are then Clovered so that the source
filesthat go with the Clovered projects are suitably instrumented. Any additional files
specified in the Clover options are copied to the build area at thistime.

4. Based on project dependencies, the plugin determines the required build order. For each
project, the plugin launches a separate non-interactive instance of Visual Studio to build
the Clovered project. This approach ensures that the current solution is not disturbed by
building a project outside its context. Clover.NET aways builds the Debug configuration
when building the Clovered projects.

The Clovered project files are standard Visual Studio project files and if you wish you may
open them in a separate instance of Visua Studio.

Page 51

Clover.NET 2.1.2714 User Manual

6. NAnt tasks

6.1. Clover NET NAnNt tasks

6.1.1. Clover NET NANt Tasks

Clover.NET supplies a number of NAnt tasks to integrate Clover.NET into existing NAnt
based build environments. The zip file for these tasks is downloaded separately. It contains
the source and builds for version 1.1 and 2.0 of the .NET framework. Currently the build
works with the latest NAnt nightly build. It will not work with NAnt 0.85 RC3 (released
16-April-2005) due to an incompatible change in the internal NAnt APl used by the
Clover.NET tasks.

In general it is easiest to install the Clover.NET NAnt tasks into the same install directory as
your main Clover.NET installation. The NAnt tasks may not be installed into your NAnt
install's bin directory.

To make the tasks available in your build file you need to load the tasks manually. The
following code in the top of your build file will achieve this:

<property nane="cl over. hone"
val ue="C: \ Program Fi | es\ Cenqua\ Cl over. NET"/ >
<l oadt asks assenbl y="${cl over. home}\ Cl over NAnt-0.85.dl "/ >

There tasks are described in the following sections:

<clover-setup> Sets up Clover.NET to be used when the <csc>
task is executed

<clover-report> Generates a Clover.NET coverage report

Please refer to the section on Adding Clover.NET to you NAnNt project for some suggestions
and tips.

6.2. Clover Setup Task

6.2.1. Description

The <clover-setup> task initializes Clover.NET for your project. In addition to telling
Clover.NET where to find the coverage database, the setup task tells NAnt to use
Clover.NET instrumentation when compiling C# code with the <csc> task when Clover is
enabled.

Page 52

Clover.NET 2.1.2714 User Manual

6.2.2. Attributes
Attribute

initstring

builddir

enabled

flushinterval

flatten

instassigns

Description

The initString describes the
location of the Clover.NET
coverage database. Typically
this is a relative or absolute file
reference.

The location where the
Instrumented source is written.
If you do not specify a location
a temporary location is used
and the instrumented source is
deleted after compilation.

This controls whether
Clover.NET will instrument
code during code compilation.
This attribute provides a
convenient control point to
enable or disable Clover.NET
from the command line

When set to a value, this
enables flushing and the value
is the minimum period between
flush operations (in
milliseconds)

Instructs Clover.NET to flatten
the directory structure of the
source tree in the CloverBuild
area. If not set or set to false
the source directory structure is
replicated in the build area

If false, Clover.NET will not
instrument boolean
expressions containing
assignment statements as this
instrumentation may cause the
compiler to not be able to
decide if an uninitialized
variable has been used.
Defaults to true.

Yes

No

No

No

No

No

Required

Page 53

Clover.NET 2.1.2714 User Manual

keyfile Location of the key file for No

signing assemblies. Normally
Clover.NET can determine this
without any additiona
infromation. In some cases,
where the location is a
constant, for example, it can be
specified here to allow the
Clovered build to be signed
correctly.

6.2.3. Nested Filesets

The <clover-setup> task supports one or more nested filesets which can be used to control
which source files are Clovered during the compilation process. Files which are excluded are
copied to the build area but are not instrumented.

6.2.4. Examples

This example shows a straight forward use of <clover-setup>

<cl over-setup initstring="C overBuil d\cl over. cdb"
bui | ddi r="C over Bui | d"
enabl ed="${cl over. enabl ed}"
fl ushi nt erval =" 1000"
flatten="true"/>

In this example, the use of Clover.NETis controlled through the clover.enabled property.
This allows the use of Clover to be controlled from the NAnt command line. Note also the
use of a flushinterval to enable flushing every second. Finally, the use of the flatten attribute
causes the Clover.NET instrumenter to write al the instrumented files into the CloverBuild
directory regardless of their location in the source hierarchy

This example shows the use of nested filesets to control which classes are instrumented

<cl over-setup initstring="Cl overBuil d\cl over. cdb"
flatten="fal se">
<fil eset basedir=".">
<i ncl ude name="**/*"/[>
<exclude name="**/nunit-gui/**/*"/>
<excl ude name="**/uikit/**/*"/>
<excl ude name="**/tests/**/*"/[>
</fileset>
</ cl over - set up>

Page 54

Clover.NET 2.1.2714 User Manual

6.3. Clover Report Task

6.3.1. Description

Generates current reports in HTML or XML formats. The report task has no parameter
attributes and all configuration occurs in the nested element. The nesting of elements within
the <clover-report> task is as follows:

<cl over-report>
<current>
<format/>
</current>
</cl over-report>

6.3.2. <current>

Generates a current coverage report. Specify the report format using a nested Format
element. Valid formats are XML and HTML.

Attributes

Attribute Description Required
title The title of the report Yes
output The output destination of the | Yes

report. Reports can either
generate a single file or a
directory of related files.

6.3.3. <format>

Specifies the output format and various options controlling the rendering of areport.

Attributes
Attribute Description Required
type The output format to render the | Yes
report in. Valid values are xnl ,
htm .
bw Specify that the report should ' No; defaults to "false"

be black and white. This will
make HTML reports smaller

Page 55

orderBy

noCache

srclevel

showempty

tabwidth

Clover.NET 2.1.2714 User Manual

(with no syntax hilighting)

Specify how to order coverage
tables. This attribute has no
effect on XML format. Valid
values are:
Al pha
Alphabetical.
PcCover edAsc
Percentage coverage
ascending.
PcCover edDesc
Percentage coverage
descending.
El enent sCover edAsc
Number of elements
covered, ascending.
El enent sCover edDesc
Number of elements
covered, descending.
El ement sUncover edAsc
Number of elements
uncovered, ascending.
El enent sUncover edDesc
Number of elements
uncovered, descending.

(HTML only) if true, insert
nocache directives in html
output.

if true, include source-level
coverage information in the
report.

If true, classes, files and
packages that do not contain
any executable code (i.e.
methods, statements, or
branches) are included in
reports. These are normally not
shown.

(Source level reports only) The
spacing of tab stops. All tabs
are expanded to to the next
tabstop using spaces in
reports.

No; defaults to PcCover edAsc

No; defaults to "false"

No; defaults to "true"

No; defaults to "false"

No; defaults to 4

Page 56

Clover.NET 2.1.2714 User Manual

6.3.4. Examples

This example shows a minimal <clover-report> instance to produce an HTML report. Once
this has run, the report will be available in the report directory.

<cl over-report>
<current title="Test Report" output="report">
<format type="htm"/>
</current>
</cl over-report>

This example produces a minimal report. It does not include source and the coverage bars are
not rendered.

<cl over-report>
<current title="test" output="report">
<format type="htm"
bw="t r ue"
srcl evel ="f al se"
hi debars="true"/>
</current>
</cl over-report>

6.4. Clover Check Task

6.4.1. Description

The <clover-check> task allows a build to ensure that particular coverage targets have been
met.

6.4.2. Attributes
Attribute Description Required

target The overall coverage target, | No
expressed as a percentage

property The name of a property which | No
will contain the result of the
coverage check.

messageProperty The name of the property which | No
contains a detailed report of
which coverage targets have
not been met.

Page 57

Clover.NET 2.1.2714 User Manual

haltOnFailure If true the build will be stopped | No
if coverage targets have not
been met

6.4.3. <namespace> Element

the namespace element allows you to specify coverage targets for specific namespaces.

Attributes
Attribute Description Required
name The namespace name Yes
target the coverage target expressed | Yes
as a percentage.
6.4.4. Examples

This example includes a check of overall coverage and the coverage of the NUnit.Core
namespace

<t arget nanme="check">

<cl over-check target="18% haltOnFailure="fal se" property="covered"

<nanmespace nanme="Nunit. Core" target="40%/>
</ cl over - check>

<if test="${covered}">
<echo nmessage="Coverage Targets met" />
</if>
<ifnot test="${covered}">
<echo nessage="Coverage target failed = ${coverage. nessage}"/ >
</ifnot>
</target>

6.5. Adding Clover NET Operations

6.5.1. Adding Clover .NET to your project

There are two approaches to adding Clover.NET to your existing NAnt-based build system.
You can either add Clover.NET targets to your main build file or you can create a separate
build file to manage just the Clover.NET related tasks. Both approaches are valid.

6.5.2. Updating your build file

Page 58

messagePr

Clover.NET 2.1.2714 User Manual

When you add Clover.NET to your build file, we recommend the following steps:
1. Add the <loadtasks> call at the top of your build

<l oadt asks assenbl y="${C over. hone}\ Cl over Nant-0.85.dl | "/ >
2. Add atarget, "with-clover" for enabling Clover.NET instrumentation

<target name="with-clover">
<cl over-setup initstring="C overBuil d\cl over. cdb"
bui | ddi r="Cl over Bui | d"
flatten="true"/>
</target>

3. Addac over-report target to generate reports. Note the dependency between the report
target and the with-clover target. This ensures the report target knows where the
Clover.NET coverage database is located.

<target name="cl over-report" depends="wi th-cl over">
<cl over-report>
<current title="test" output="report">
<format type="htm"/>
</current>
</ cl over-report>
</target>

With the above changes in place you can continue to use your build file as before for normal
builds. To build with Clover, you specify the with-clover target:

NAnt wi t h-cl over di st

For reports, you use the clover-report target. If you wish, you can add more dependencies to
the clover-report target to build and run tests with the Clovered build.

6.5.3. Auxilliary Build File

The other approach to adding Clover.NET to your project is to create an auxilliary build file
with just the Clover.NET related targets. Y our main build fileisleft asis.

<proj ect default="build">
<echo nmessage="building with C over"/>
<property nane="C over. hone" value="Install Directory"/>

<| oadt asks assenbl y="${C over. hone}\ Cl overNant-0.85.dl|"/>
<cl over-setup initstring="C overBuil d\cl over. cdb"

bui | ddi r="d over Bui | d"

flatten="true"/>

Page 59

Clover.NET 2.1.2714 User Manual

<target name="build">
<nant buil dfil e="main. build"/>
</target>

<target nanme="report">
<cl over-report>
<current title="test" output="report">
<format type="htm"/>
</current>
</ cl over-report>
</target>
</ proj ect >

As shown in the example, the clover.build build file enables Clover for al operations. For
build operations it delegates to your main.build build file, which will Instrument code prior to
compilation.

Page 60

Clover.NET 2.1.2714 User Manual

7. Clover NET Usage

7.1. Source Directives

Clover supports a number of directives that you can use in your source to control
instrumentation. Directives can be on a line by themselves or part of any valid single or
multi-line comment.

7.1.1. Turning Instrumentation On and Off

CLOVER: ON
CLOVER: OFF

These directives enabled and disable Clover instrumentation. Thisis useful if you don't want
Clover to instrument a section of code for whatever reason. Note that the scope of this
directive isthe current file only.

7.1.2. Force Clover to flush
CLOVER: FLUSH

Clover will insert code to flush coverage data to disk. The flush code will be inserted as soon
as possible after the directive.

7.2. Assembly Signing

7.2.1. Assembly Signing

In many cases, .NET assemblies are signed using a key. Often this is specified by arelative
path to akey filein an Assemblylnfo.csfile such as:

[assenbl y: Assenbl yKeyFile("..\\..\\..\\project.key")]

The Clover Runtime assembly is strongly named, so Clovered assemblies may be signed. If
the original assembly is signed, the Clovered assembly will aso be signed. When Clovering,
Clover.NET will replace any relative key file references with an absolute file path. This
ensures that the assembly can be signed even if it is created at a different relative location
from the key file.

Page 61

Clover.NET 2.1.2714 User Manual

7.3. Environment Variables

7.3.1. Environment Variables
Clover.NET supports two environment variables:
* CLOVER DB

Setting this environment variable allows you to override the location of the Clover.NET

coverage database. This can be used, for example, if you move the executable for testing
purposes, to another machine. It would also allow the Clovered executable to be used on
adifferent platform, such as Mono.

* CLOVER _DEBUG

Setting this environment variable to any value will cause the Clover Runtime to append
debug information to afile clover.log along side the coverage database. At present, this
just records the location of the assembly which creates a coverage recorder.

Page 62

Clover.NET 2.1.2714 User Manual

8. Miscellaneous

8.1. Frequently Asked Questions

8.1.1. Questions

1.

2.

3.

General

e Can't find an answer here?

NAnNt Tasks

e Why can't | install the NAnt tasks into the NAnt bin directory?

Visual Studio.NET Plugin

» | haveinstalled the Clover.NET plugin for Visual Studio.NET 2003 and it does not
appear or it appears and all of the menus are greyed out.

* Why are projects which | have selected as excluded still copied to the Clover build
area?

e |sVisual Studio.NET 2005 supported?

Problemswith Clover

» | have Clovered my code and run my tests but when | generates reports my coverage
shows as 0% and there are no coverage recordings

e Howdol Clover an ASP.NET application

« When my Clovered ASP.Net web application starts up, it cannot find the Clovered
database even though | can see it on the disk.

Technical Background

» How arethe Clover.NET coverage percentages calculated?

8.1.2. Answers

1. General

1.1. Can't find an answer here?

Try our Online Forums, or contact us directly.

2. NAnt Tasks

2.1. Why can't | install the NAnt tasksinto the NAnt bin directory?

NAnt tasks are named by a .NET attribute, the TaskName attribute. The Clover.NET csc
tasks works by replacing the csc task and then delegating operations to the original csc task.

Page 63

http://www.cenqua.com/forums/
mailto:clover-support@cenqua.com

Clover.NET 2.1.2714 User Manual

To do this the Clover version of the task must have a TaskName attribute of csc. If thiswere
to be deployed in the NAnt bin directory, it would collide with the standard csc task. NAnt
does not currently allow atask to be registered under a name other than the name supplied by
the TaskName attribute.

3. Visual Studio.NET Plugin

3.1. | have installed the Clover NET plugin for Visual Studio.NET 2003 and it does
not appear or it appearsand all of the menus are greyed out.

The Clover.NET plugin requires the Microsoft VSIP interop assemblies to be installed. The
installer for these is included in the Clover.NET download and should be installed prior to
installing Clover.NET. If you have done that and you till have issues getting the
Clover.NET plugin to work, please go to theinstall directory and typein:

Cl over Reg /root: Software\ M crosoft\ Vi sual Studi o\7.1 Cl over Package. dl |
If you receive any errors, please contact support for further assistance.

3.2. Why are projectswhich | have selected as excluded still copied to the Clover build
area?

Even when a project is excluded from Clovering, Clover.NET needs to update any
inter-project dependencies. For example, if a project you've excluded depends on one you've
decided to Clover, Clover.NET needs to update the project dependency to point to the
Clovered version. It does thisin a copy of the excluded project. So, when you select a project
for exclusion, Clover.NET will still copy it to the CloverBuild area but it will not instrument
the code. Clover.NET will still make some changes to the code to update an relative key file
locations used in assembly signing.

3.3.IsVisual Studio.NET 2005 supported?

Yes, Visua Studio 2005 is supported as are the new language features associated with the
verson 2.0 of the .NET Framework. The Clover.NET download includes instalers for
Clover.NET for both framework versions and the asscoiated version of Visua Studio. Both
versions of Clover.NET may beinstalled.

4. Problemswith Clover

4.1. | have Clovered my code and run my tests but when | generates reports my
cover age shows as 0% and there are no coverage r ecor dings

Page 64

Clover.NET 2.1.2714 User Manual

The Clover.NET runtime writes out a coverage recording when the Application Domain in
which it is running is unloaded. If you run your tests in NUnit, you will need to exit NUnit
(or load another test suite). When you do so, the coverage recording is written and you can
then load the coverage results or generate a coverage report.

An alternative is to enable flushing in your Clovered code so that the coverage is written out
at regular intervals.

4.2. How do | Clover an ASP.NET application

As with the previous question, you need to have ASP.NET unload the AppDomain it is using
for your webapp. When that unload occurs, the coverage is written out. The tricky part is
getting ASP.NET to unload your webapp. This can be done by either deploying the
unClovered version of your webapp or deleting the Clovered assemblies. ASP.NET will
notice the change in the webapp assembly and unload the Clovered version.

4.3. When my Clovered ASP.Net web application starts up, it cannot find the
Clover ed database even though | can seeit on the disk.

If your Visual Studio project is under your "My Documents' folder, and you accept the
default Clover.NET database location, the generated coverage database will not be available
to the ASP.NET process since its "My Documents’ is actually a different folder in the file
system. If you set the Clover database location to a location available to the ASP.NET user,
you should have no problems.

5. Technical Background

5.1. How arethe Clover NET cover age per centages calculated?

The "total" coverage percentage of a class (or file, namespace, project) is provided as a quick
guide to how well the classis covered - and to allow ranking of classes. The Total Percentage
Coverage (TPC) is calculated using the formula:

TPC = (CT + CF + SC + M)/ (2*C+ S + M

wher e

CT - conditionals that evaluated to "true" at |east once
CF - conditionals that evaluated to "fal se" at | east once
SC - statenents covered

MC - net hods entered

C - total number of conditionals

Page 65

Clover.NET 2.1.2714 User Manual

S - total nunmber of statenents
M - total nunber of methods

Page 66

	1 Introduction
	1.1 Introduction
	1.1.1 Getting Started
	1.1.2 System Requirements
	1.1.3 Acknowledgments

	2 Code Coverage
	2.1 Code Coverage
	2.1.1 What is Code Coverage?
	2.1.2 Why Measure Code Coverage?
	2.1.3 How Code Coverage Works

	3 Installation
	3.1 Installation Guide
	3.1.1 Clover.NET 2.1 Downloads
	3.1.2 .NET 1.1 and Visual Studio .NET 2003
	3.1.3 .NET 2.0 and Visual Studio 2005

	3.2 Clover.NET licensing
	3.2.1 Clover.NET licensing

	4 Command Line Tools
	4.1 Clover.NET Command Line Tools
	4.1.1 Command Line Tools
	4.1.2 Response Files

	4.2 Clover.NET Instrumenter
	4.2.1 CloverInstr - The Clover.NET instrumenter
	4.2.2 Usage
	4.2.3 Options
	4.2.4 Arguments
	4.2.5 Examples

	4.3 Clover.NET Solution Instrumenter
	4.3.1 CloverSolution - Visual Studio solution instrumenter
	4.3.2 Usage
	4.3.3 Options
	4.3.4 Examples

	4.4 Clover.NET XML Report Generator
	4.4.1 XMLReporter - The Clover.NET XML Report Generator
	4.4.2 Usage
	4.4.3 Options
	4.4.4 Examples

	4.5 Clover.NET HTML Report Generator
	4.5.1 HtmlReporter - The Clover.NET HTML Report Generator
	4.5.2 Usage
	4.5.3 Options
	4.5.4 Examples

	4.6 Clover.NET Coverage Checker
	4.6.1 CloverCheck
	4.6.2 Usage
	4.6.3 Options
	4.6.4 Examples

	4.7 Clover.NET Runtime Assembly
	4.7.1 CloverRuntime - The Clover.NET Runtime Assembly

	5 Visual Studio Plugin
	5.1 Clover.NET Visual Studio Plugin
	5.1.1 Visual Studio Plugin

	5.2 Clovering with the Plugin
	5.2.1 Clovering with the plugin

	5.3 Clover.NET toolbar
	5.3.1 Clover.NET toolbar
	5.3.2 Toolbar Functions

	5.4 Options Tool Window
	5.4.1 Clover Options Tool Window

	5.5 Coverage Tree View Tool Window
	5.5.1 Clover.NET Coverage Tree View

	5.6 Coverage Display
	5.6.1 Coverage Display

	5.7 Report Generation with the Plugin
	5.7.1 Report Generation with the plugin

	5.8 How the Plugin Operates
	5.8.1 How the Plugin Operates

	6 NAnt tasks
	6.1 Clover.NET NAnt tasks
	6.1.1 Clover.NET NAnt Tasks

	6.2 Clover Setup Task
	6.2.1 Description
	6.2.2 Attributes
	6.2.3 Nested Filesets
	6.2.4 Examples

	6.3 Clover Report Task
	6.3.1 Description
	6.3.2 <current>
	6.3.2.1 Attributes

	6.3.3 <format>
	6.3.3.1 Attributes

	6.3.4 Examples

	6.4 Clover Check Task
	6.4.1 Description
	6.4.2 Attributes
	6.4.3 <namespace> Element
	6.4.3.1 Attributes

	6.4.4 Examples

	6.5 Adding Clover.NET Operations
	6.5.1 Adding Clover.NET to your project
	6.5.2 Updating your build file
	6.5.3 Auxilliary Build File

	7 Clover.NET Usage
	7.1 Source Directives
	7.1.1 Turning Instrumentation On and Off
	7.1.2 Force Clover to flush

	7.2 Assembly Signing
	7.2.1 Assembly Signing

	7.3 Environment Variables
	7.3.1 Environment Variables

	8 Miscellaneous
	8.1 Frequently Asked Questions
	8.1.1 Questions
	8.1.2 Answers
	8.1.2.1 1. General
	8.1.2.1.1 1.1.
 Can't find an answer here?

	8.1.2.2 2. NAnt Tasks
	8.1.2.2.1 2.1.
 Why can't I install the NAnt tasks into the NAnt bin directory?

	8.1.2.3 3. Visual Studio.NET Plugin
	8.1.2.3.1 3.1.
 I have installed the Clover.NET plugin for Visual Studio.NET 2003 and it does
 not appear or it appears and all of the menus are greyed out.

	8.1.2.3.2 3.2.
 Why are projects which I have selected as excluded still copied to the
 Clover build area?

	8.1.2.3.3 3.3.
 Is Visual Studio.NET 2005 supported?

	8.1.2.4 4. Problems with Clover
	8.1.2.4.1 4.1.
 I have Clovered my code and run my tests but when I generates reports
 my coverage shows as 0% and there are no coverage recordings

	8.1.2.4.2 4.2.
 How do I Clover an ASP.NET application

	8.1.2.4.3 4.3.
 When my Clovered ASP.Net web application starts up, it cannot find
 the Clovered database even though I can see it on the disk.

	8.1.2.5 5. Technical Background
	8.1.2.5.1 5.1.
 How are the Clover.NET coverage percentages calculated?

